

Applications of Enterprise GIS-T (AEGIST) FHWAs Enterprise approach to a National GIS/LRS Workshop 7, GIS-T 2021

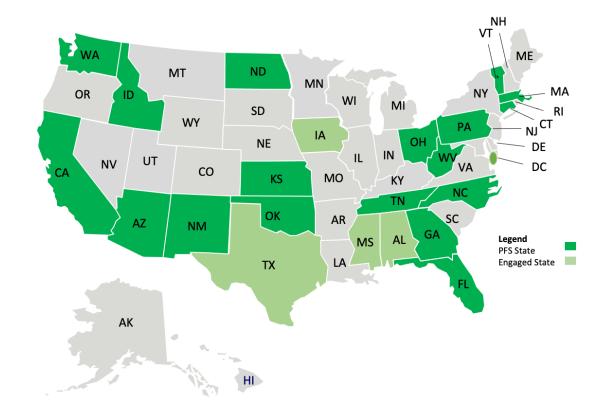
U.S. Department of Transportation Federal Highway Administration

Workshop Objectives and About AEGIST

About AEGIST

Pooled Fund Study (PFS): FHWA and 18 States Enhancing Enterprise Data Management and Governance Practices

+ Spatial Data Modeling

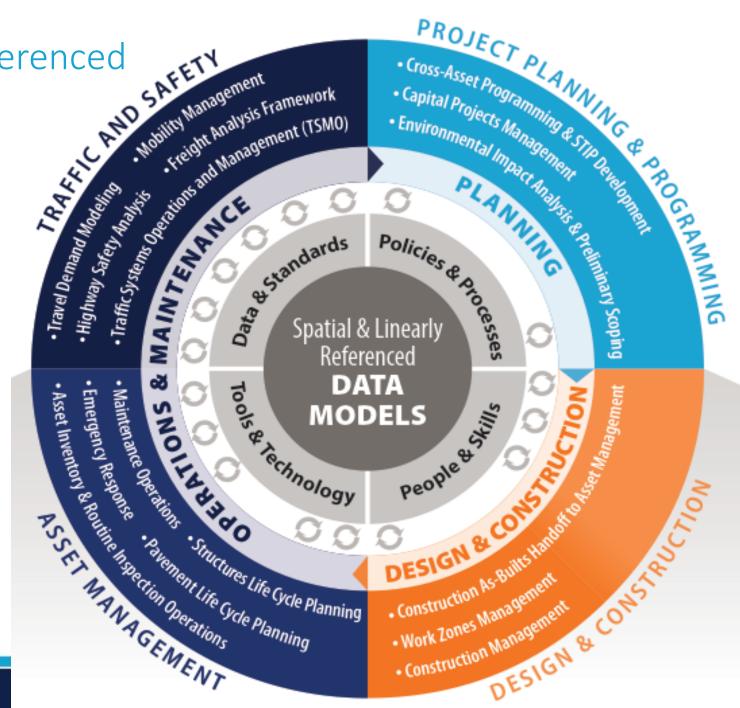

- » Linear Referencing System, Routable Network, Events, Topology
- » Linear/Spatial Referencing Data Models and Data Structures
- » Data Quality, Availability, Readiness (FAIR), Authoritative Sources

Spatial Data Integration and Engineering

- » Integrating and Engineering Business Data using LRS.GIS
- » Data Conflation, Integration using LRS.GIS
- » Data Hubs and Data Engineering Platforms for Preparing Data

Spatial Data Analytics

- » Spatial Statistics, Econometrics, AI/ML, System of Engagement
- » Federal, State Reporting: HPMS 9.0 (with MIRE and Intersections)
- » Open Data Portals, Data Sharing and Use



www.gisintransportation.com

Governing Spatial & Linearly Referenced Data Models at Enterprise Level

Spatial Data Modeling for Transactional Systems of Record and for Enterprise Data Warehouses, Databases, Reporting and Publication (i.e., for Systems of Engagement)

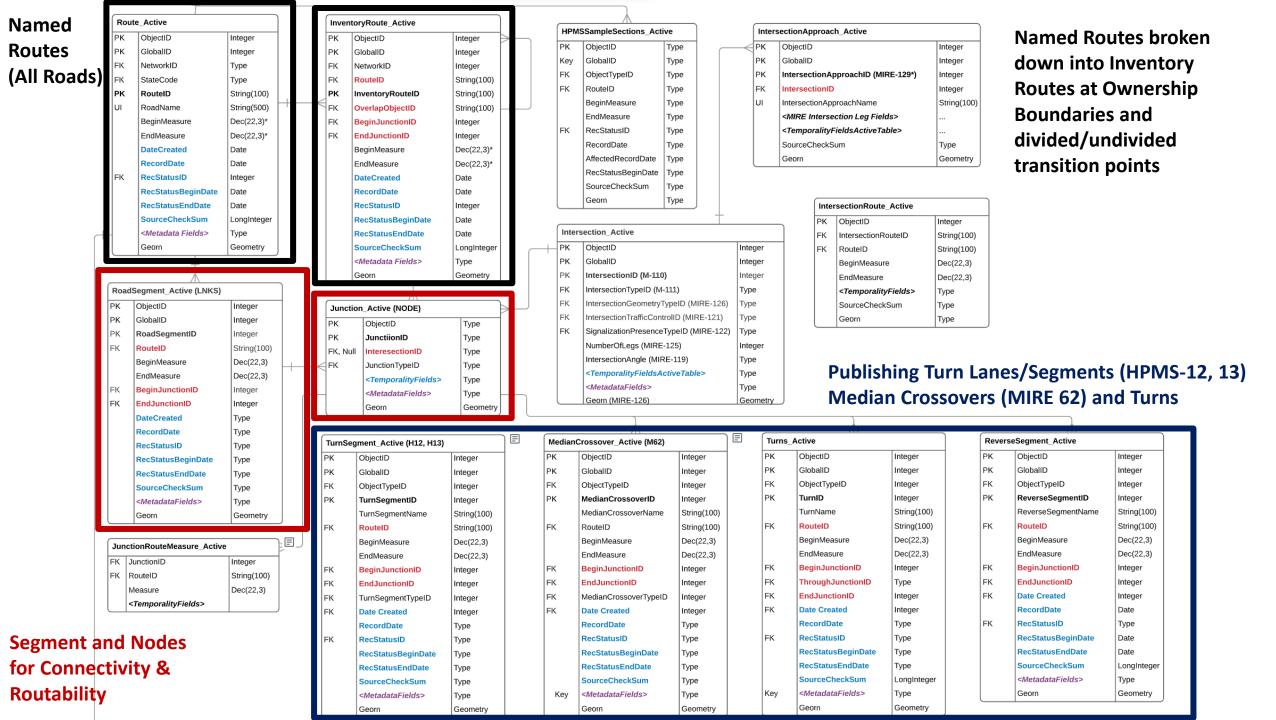
- 1. Routes and Concurrencies Publication Data Model: Route ID, Name, Single/Dual-carriageway geometry and concurrent routes based on business user requirements: Safety, Travel Demand Modeling, Asset and Project Management
- Road Segments, Junctions and Intersection Data Model with connectivity and topology for building a routable network with temporality using LRS Routes.
 - 1. Road Segments (Links)
 - 2. Junctions as Nodes (OGC GDF) & Junction Measures
 - 3. Intersection Points and Legs; Intersection Routes

© Source: Bhargava et.al. (2021). Identifying Data Frameworks and Governance for Civil Integrated Management. FHWA Research. WSP

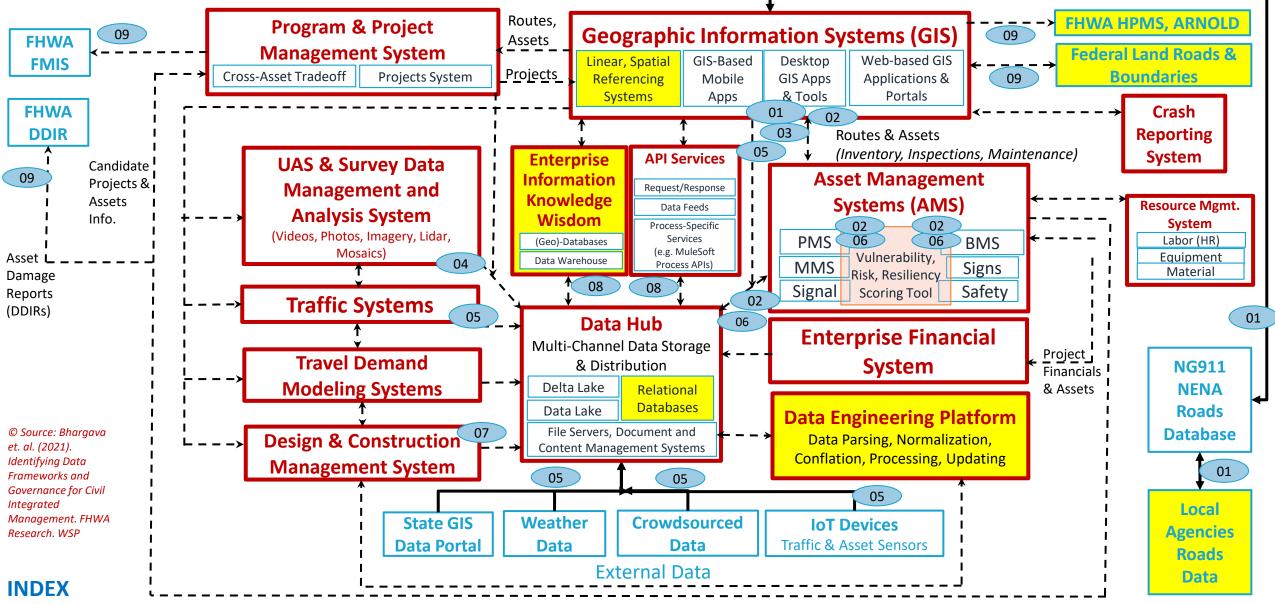
Workshop Outline

Торіс	Presentation	Breakouts
Workshop Objectives, About AEGIST and Demographics Poll	10 Minutes	
Publishing Routes Data Model with Topology & Connectivity for Business Users Requirements: Z-Values, Single/Dual-Carriageway, Concurrent Routes, Frontage Roads Business Use Cases: Calibrating Measure Values, At-Grade vs. Grade Separated Intersections, Flood Impact and Asset Resiliency Analysis, Geometric Safety (Curves, Grades) Analysis. Etc.	20 Minutes	30 Minutes* (3 Breakout Groups)
Break	10 Minutes	
Publishing Road Segments, Intersection, Junction, Legs, Topological Features for Users Requirements: Segments, Junctions & Intersection Connectivity; Topological Connectors (Turn Segments/Lanes, Median Crossovers), Turns, Turn Penalty and Restrictions Business Use Cases: Travel Demand Modeling, Routing, Highway Safety Analysis & MIRE	30 Minutes	45 Minutes* (2 Breakout Groups)
Summary, Wrap-Up and Next Steps	5 Minutes	

*Including Debrief and Polling


Workshop Objectives

- + Build on the Road Network Data Modeling Principles Presented in Guidebook v1.0 that was released in Dec 2019.
- + Provide Information about Guidebook v2.0 Implementation of AEGIST at Pooled Fund Study States.
 - » Publication Model for LRS and GIS Data for Data Engineers and Data Scientists to Provision Data to Business Units/Systems
 - » Publish Named Routes and Inventory Routes with Topology Concurrency, Single/Dual Geometry, Route Relationships
 - » Publish Intersection Model with MIRE Attributes: Junctions*, Intersection, Intersection Approach, Road Segments & Junction Route Measures
 - » Road Segments (LRS events) exported to Create "Links" in Travel Demand Modeling systems, Establish Routability and Connectivity
 - » Road Segments connect at Junctions. Not Intersections. But can be associated with Intersections using Junctions per OGC GDF
 - » Topological Connectors for Building Routable Network, Modeling Divided/Undivided Highway Intersections
 - Internal Intersection Connectors
 - Turn Segments/Lanes (HPMS Items 12, 13 for Sample Panels)
 - Median Crossovers
 - Reverse Segments


Configuring Topological Connectors: LRS Centerline (Datum) and Routes; or, GIS Features for Spatial Conflation with LRS Objects: Routes, Events

*Terminology change in AEGIST Guidebook v1.0. Navigation Points will be referred to as Junctions (as per OGC GDF)

Spatial Data Modeling in Enterprise Systems, Data Model Integrations and Engineering and Spatial Analytics

02: [Asset Inventory, Condition and Work History, Plans Data] from AMS To Data Hub & Vulnerability Analysis Systems 03: [Asset Damages Data] from Asset Inspection & Damage Assessment Apps To Asset Management System, GIS 04: [Survey, Inspection Data] from UAS & Survey Systems To AMS, GIS, Design, Construction, Data Hub Systems

01: [Routes and Assets Data] from Linear, Spatial Referencing Systems To Asset & Project Systems, Data Hub, Warehouse 05: [Incident, Traffic & Asset Data] from Weather, Traffic and Asset Systems To Data Hub, Warehouse, GIS, BI 06: [Repair Projects and Work Plan/Requests Data] from Vulnerability Analysis & DDIR Apps To PPMS & AMS 07: [As-Built Asset Data] Design, Construction To LRS-GIS Systems and Asset Management Systems 08: [Processed and Integrated Data for Analytics] from Data Hub To Data Warehouse & BI Systems

09: [Roads and Assets, Projects, Damages] from DOT Enterprise Systems To FHWA HPMS, FMIS, DDIR Systems

Demographics Poll

- Name and Agency
- Routes Management Approach
 - » All Roads in State vs. Agency Administered Roads Only
 - » Coordination between DOT and Local Agencies in your State

Intersection and Road Segments Management Approach

- » Intersection as a referent in Intersection-Offset LRM
- » Intersection Points
- » Road Segments (Intersection to Intersection)

U.S. Department of Transportation Federal Highway Administration

Objective 1: Routes Publication Data Model

Goal:

- + Review specific use cases
- Shed light on LRS management styles

Requirement 1: Publish Routes with Z-Values

Requirement 2: Publish Dual Geometry for Divided Highways

Requirement 3: Publish Route Topology

Requirement 1: Publish Routes with Z-Values

Topic 1.1: Business Use Cases

- 1) Calibrating Measure values for Routes
- 2) Distinguishing at-grade intersections vs.Under/Overpasses for Routing, Analysis
- 3) Geometric Safety Analysis (Curve, Grade)
 - a) Vertical Curves for Safety
 - b) Spatial Econometric Models for Safety
 Performance Functions
- 4) Asset Management: Risk & Resiliency Analysis
 - a) Flood Impact Analysis
 - b) Rockfall Analysis
 - c) Snow Removal (Identifying Steep Hills)
 - d) Estimating Resurfacing Volumes
 - e) Slope & Superelevation Calculations
 - f) Vertical Bridge Clearance

5) Other?

AM-03: Flood Impact and Climate Resiliency NO Analysis for Highway Segments and Bridges Flooded Flooded OSM Line work and imagery alignment and conflation with Authoritative DOT LRS and **Design Systems Centerlines**

Requirement 1: Publish Routes with Z-Values

Topic 1.2: Authoritative Data Sources for Z-Values

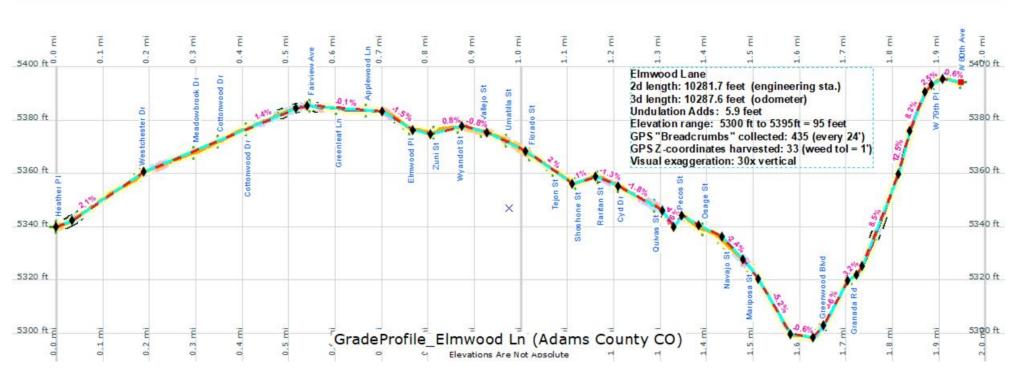
- GPS Trace: Pavement Data Collection Vans 🛛 North Carolina, New Mexico
- Lidar Point Clouds 🛽 Georgia, North Carolina, Oklahoma, Tennessee, Vermont, West Virginia
- As-let Plans or As-builts from Design/Construction

Topic 1.3: Density of Vertices with Z-Values

- Overlay GPS Trace, LiDAR data with z-elevation values on LRS Routes to Integrate, Engineer and Publish a 3D Routes Model for Business Users at varying scales depending on use.
- Typically, less density is better. More dense at locations of vertical and horizontal curvature to maintain alignments
- LRS does not need to hold z-elevations. But it can be one of the consumers of z-value data processing. Factor in LRS Precision (~0.001 Miles - 5 ft) if configuring Z-values in LRS. Utilize Z-value processing tools to determine values at specific vertex points along LRS

Routes Model: Requirement 1: Publish Routes with Z-Values

Z-coordinate attributes methods:


- GPS breadcrumbs (i.e. GPS traces) collected by mobile data collection efforts
- LiDaR clouds
- Digital terrain models
- Engineering plan/profile tables

Pros and Cons:

- HPMS/MIRE support
- Vehicle routing
- Polyline complexity

Solution:

- Consider business needs for accuracy
- Manage as a feature outside of LRS
- Need for a standard
- Generalize vertices

				T.A.R.A.	BTATE.	PREATT NO.	SHEET.	TRUE.	45.80
				9	ANT.	-170-4-500	65	175	
					[110 CI 271			
-		-			_		_	17	-
-	Н	ORIZONT	AL & VER	TICAL	CON	TROL			
0	Station	Offset	N	E		Elevation	Des	criptic	99
404	320+38.48	Rt 10.28	835325.983	610757.	346	2584.380	*	Reba	Y
405	331+57.52	Rt 155.05	836212.098	611513.2	268	2600.527	*	Rebo	v
406	350+20.16	Lt 50.88	838042.525	611840.	491	2600.608	5	Rebe	Mr.
407	377+38.21	Rt 57.14	840739.910	612133.	192	2605.925	*	Rebo	1r
408	412+47.29	Rt 41.55	843806.630	6/3290.	389	2599.707	36	Reba	tr
409	422+46.93	Rt 22.48	844802.896	6/3424.	072	2600.204	36	Rebe	tr .
410	433+83.82	Rt 24.91	845941.018	613349.	963	2602.744	*	Rebo	r
4]]	459+74.49	LI 27.94	848119.285	612/92.	565	2617.339	*	Rebo	1r
412	459+75.83	LI 30.54	849124.515	612218.	544	2618.295	*	Rebo	tr"
413	483+02.98	LI 41.82	850397.900	612613.	163	2623.272	*	Rebe	1r
414	497+28.39	Rt 34.52	851535.715	613490.	131	2626.539	*	Reba	10
4/5	517+12.71	Rt 23.86	853339.623	612873.	363	2637.282	×.	Reba	11
4/6	537+53.16	RI 25.38	855340.960	612895.	2102	2644.867	R/ +	Reba	

Topic 2.1: Business Use Cases

- 1) Travel Demand Modeling
- 2) Highway Safety Analysis
 - a) Vertical Alignment/Curves by Direction (zvalues of vertices in each direction)
 - b) Safety Performance Functions, Level of Service Score (LOSS) & Diagnostic Analysis
 - c) Highway Safety Improvement Program Projects

3) Asset Management

- a) Pavement Construction History
- b) Pavement Condition: Spatial Analysis
- c) Slope & Superelevation from Centerline
- d) Project Planning & Programming
- e) Asset Resiliency and Flood Impact Analysis

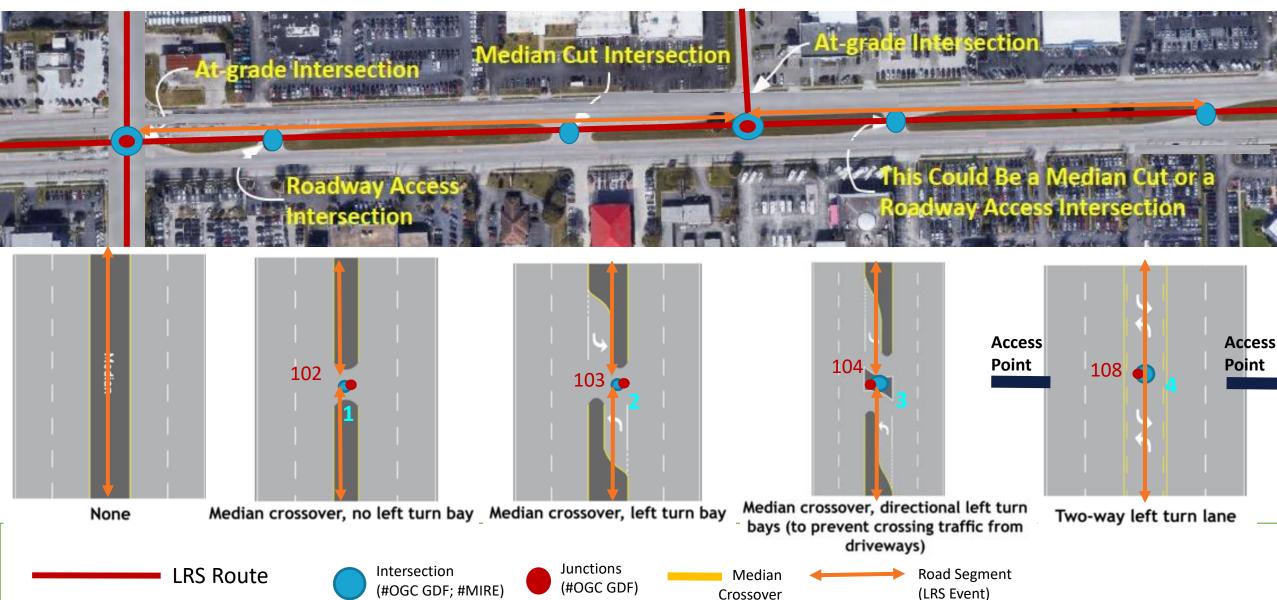
Topic 2.2: Criteria for creating dual geometry

- Existing HPMS Criteria: Median Type, Median Width
- Median Height, Shape, Size, Design Type?
- Road Function: Full Access vs. Limited Access.; If no Turning Movements allowed then divide. If curb has cutouts, then road should be modeled as undivided. Basically, local regulation allowed to cross or not
- Speed Differential
- Passing Sight Distance
- Number of Lanes

Approach 1

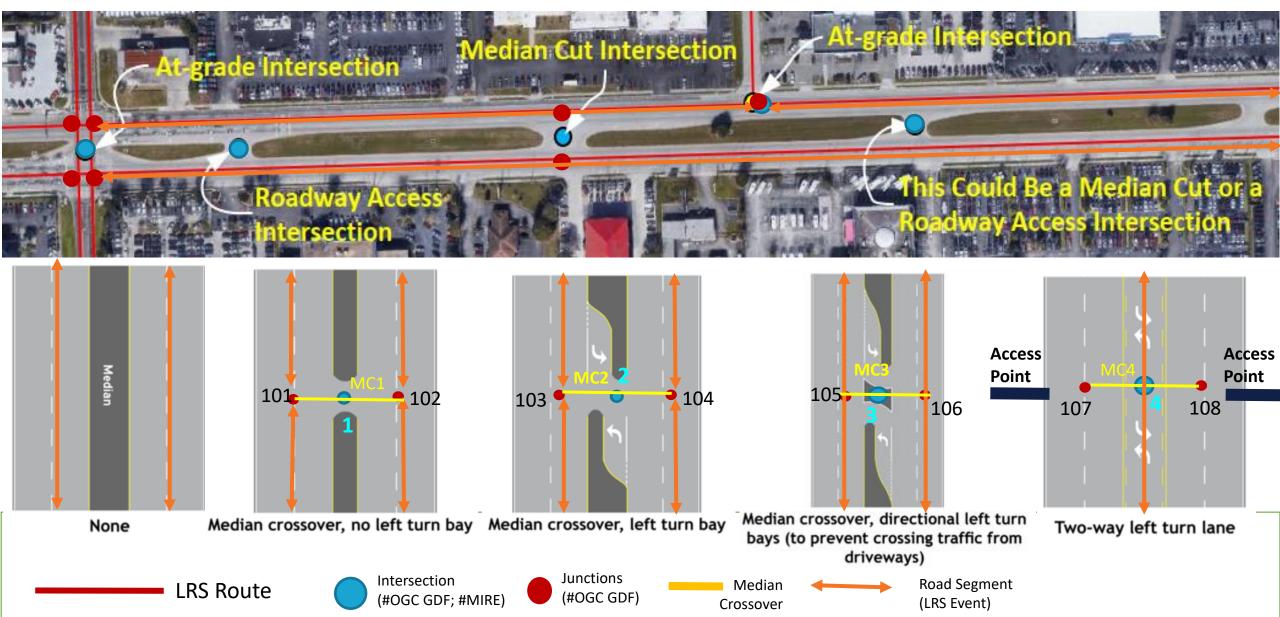
One Route to model for both Directions – One Route Record (route is two-way facility)

Approach 2

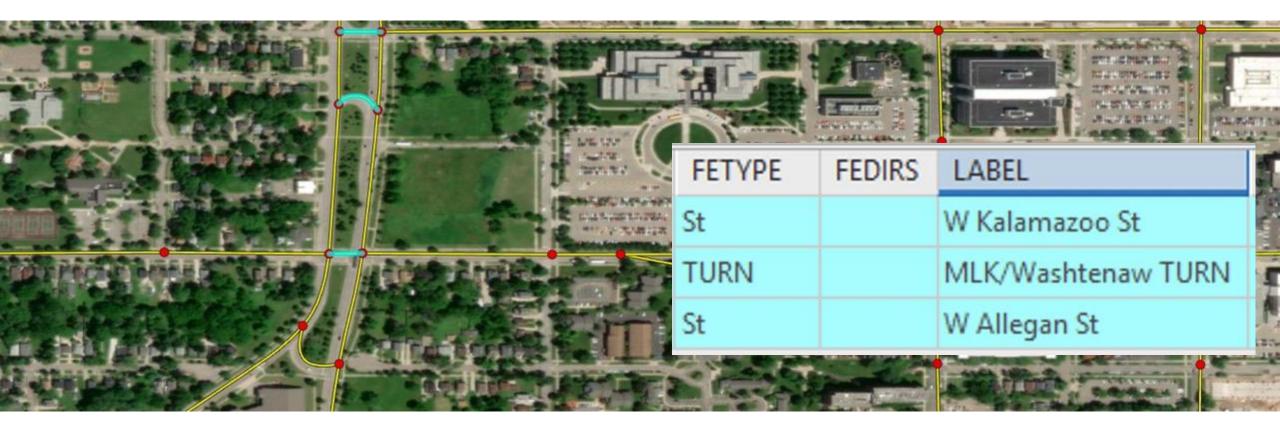

One Route per Direction -Two Route Records with <u>"same" geometry</u> (each route is one-way facility)

Approach 3

One Route per Direction - Two Route Records with <u>"different" geometry</u> (each route is one-way facility)


Routes Model Scenario: Single Geometry

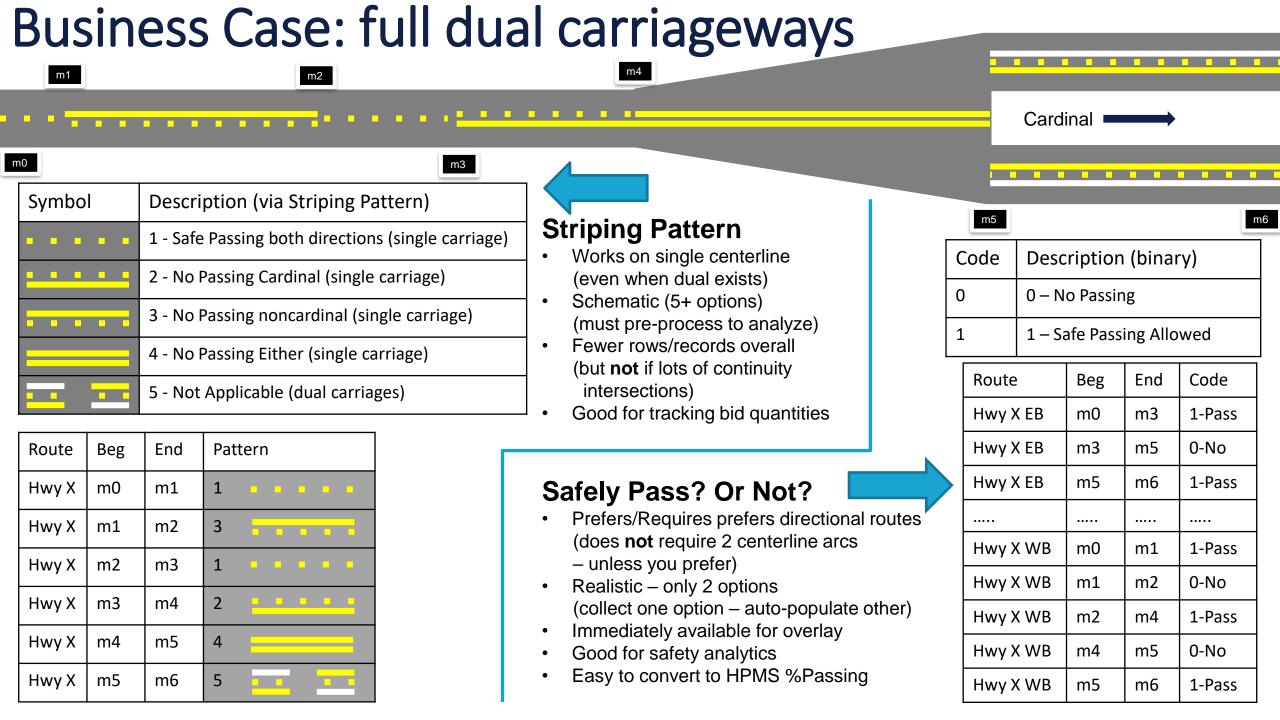
Requirement 2: Publish Dual Geometry for Divided Highways



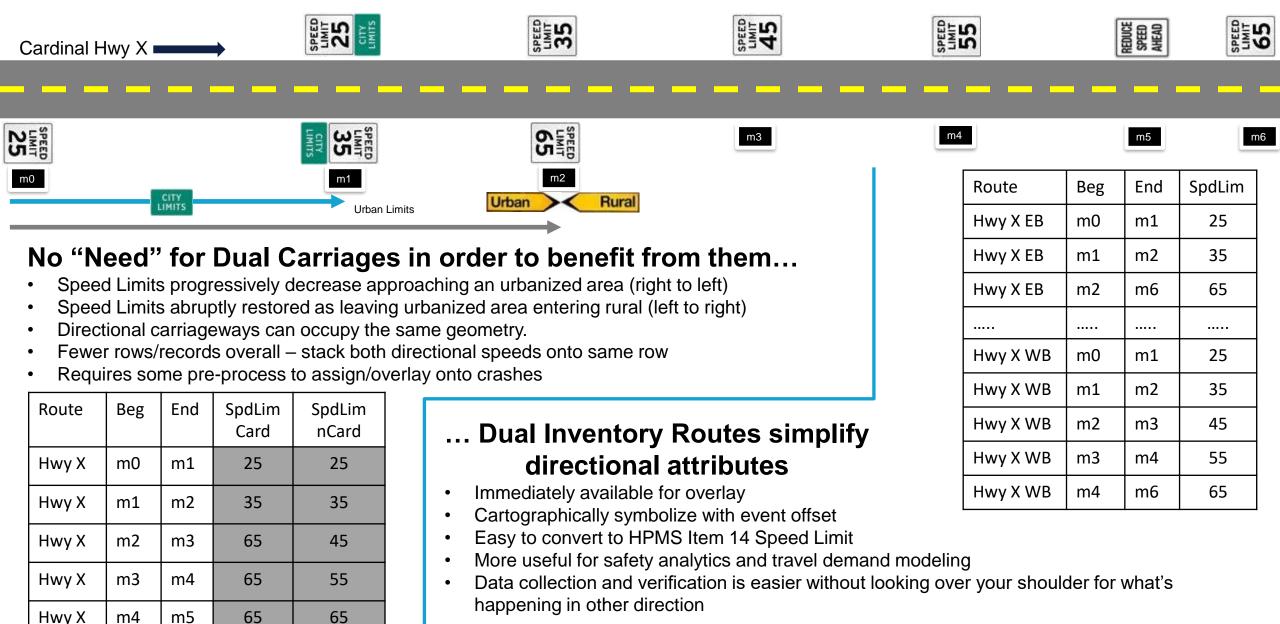
Routes Model Scenario: Dual Geometry

Requirement 2: Publish Dual Geometry for Divided Highways

Routes ModelRequirement 2: Publish Dual Geometry for Divided HighwaysTravel Demand Modeling - Median Crossover Ramps



⊿ FID	Shape	ID1	DIR	LENGTH	FACTYPE	TOTLANES	POSTSPD	WIDTH	PARKING	TURNLANE	FEDFUNC	VER	OID_1	PR	BMP	EMP	FEDIRP	FENAME	FETYPE	FEDIRS	LABEL
1498	Polyline	360774	0	0.02	14	2	30	12	0	0	7	16a	3500164	335505	0.678	0.698	w	Kalamazoo	St		W Kalamazoo St
1501	Polyline	40828	-1	0.03	6	3	30	12	0	0	3	16a	105960	3331248	0	0.032		MLK/Washtenaw	TURN		MLK/Washtenaw TURN
1502	Polyline	40909	1	0.03	5	3	30	12	0	0	3	16a	3935973	339807	0.4	0.425	w	Allegan	St		W Allegan St
Clicks	Click to add new row																				


Click to add new row.

If Dual Geometry Routes used in Travel Demand Modeling Systems, do we also need median crossovers & turn lanes?

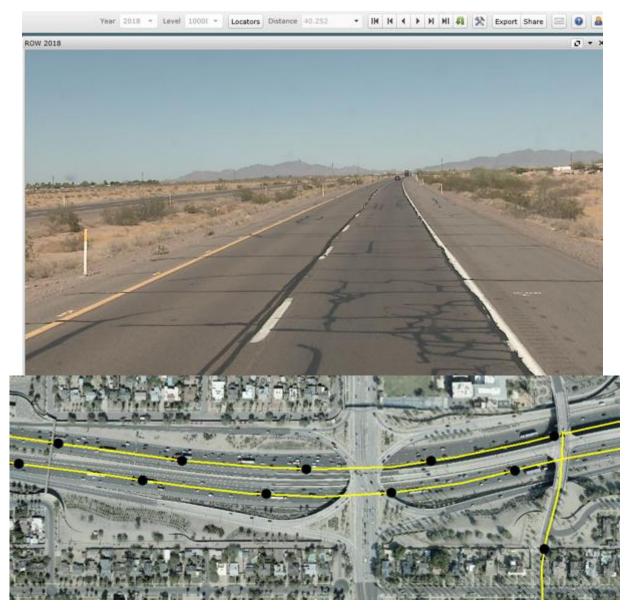
- No Median Crossovers and Turn Segments Necessary for Travel Demand Modeling. Single Carriageway Geometry Preferred, but OSM being used

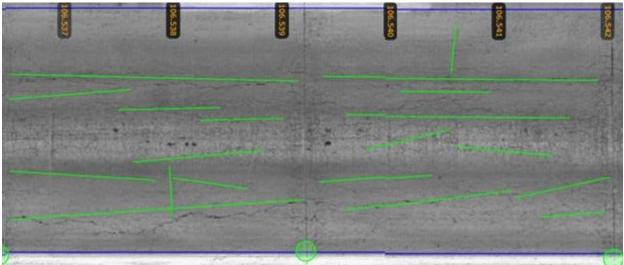
Business Case: full dual carriageways

Use Case 2: Spatial Safety Analysis

Intersection Analysis

- Junction and Junction Leg
- Crash rate analysis
- Ease of analysis
- Simple is better




Use Case 3: Asset Management

Pavement Inspection Image (unstructured Data) Analysis and Integration with HPMS-Pavement Management Sections

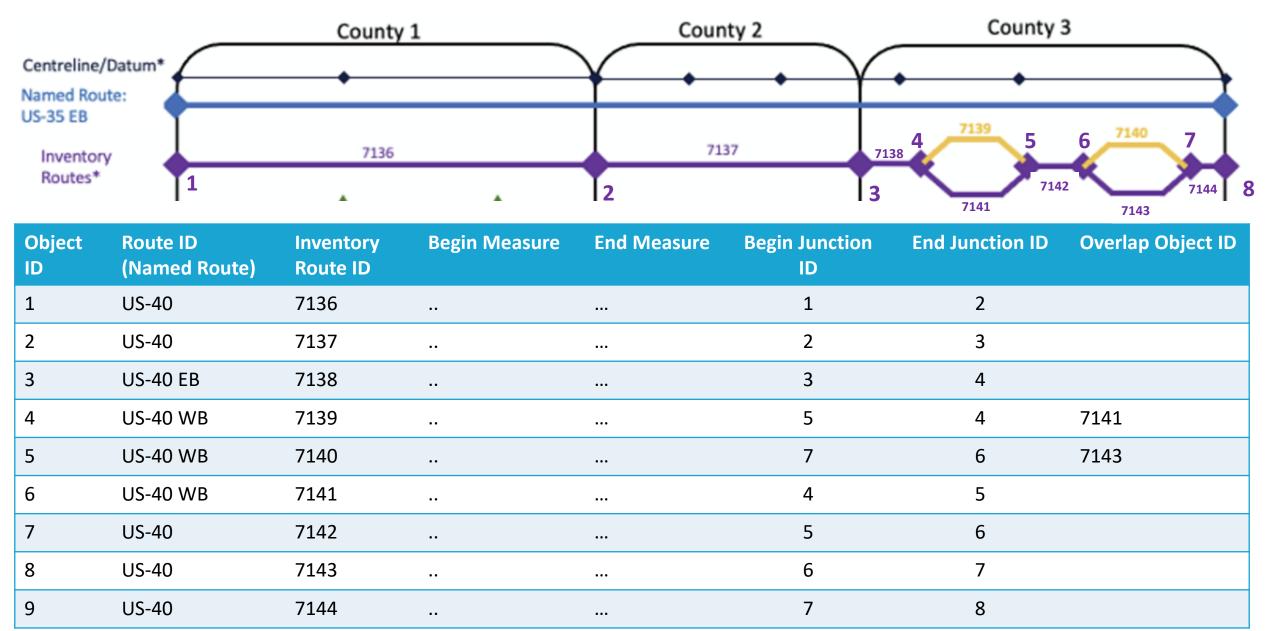
Modern Pavement Management Systems

- Georeferenced Image Frames Created from Videos for spatial analysis by Computer Vision Algorithms
- Integrated with Structured Pavement Management Sections and HPMS Sections for IRI, Distress, Cracking
- Machine Learning Algorithm Run along each Route (by direction) to identify pothole locations and flag those locations as events

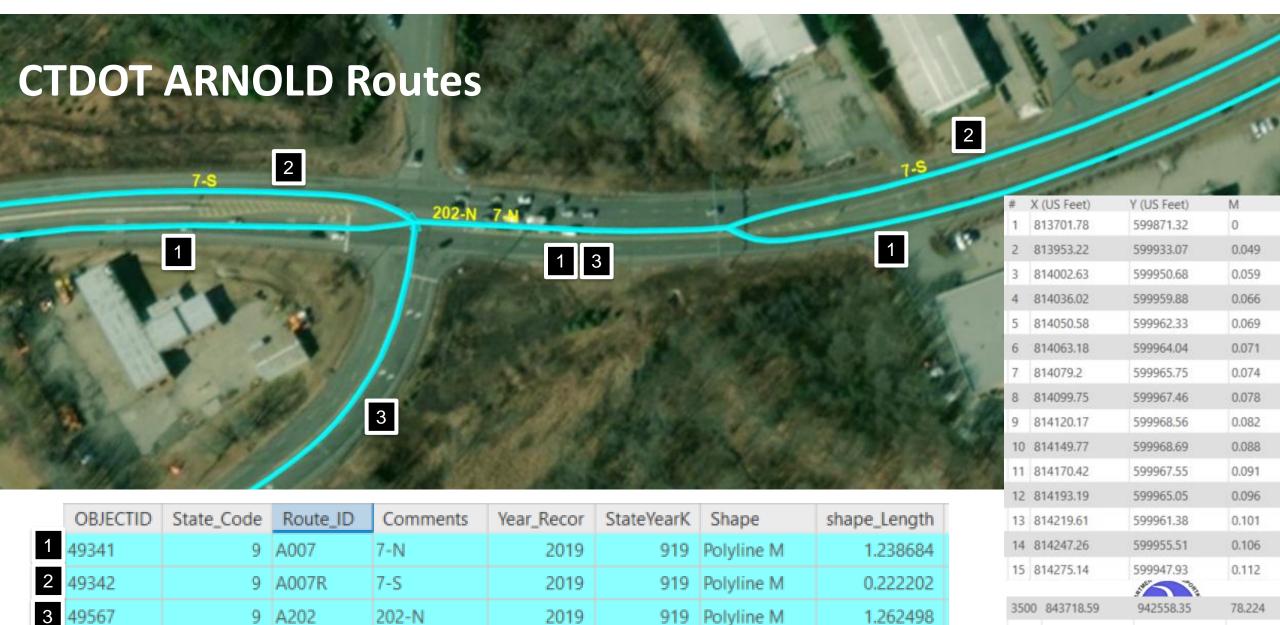
Requirement 3: Publish Route Topology

Topic 3.1: Establish Route Topology using Inventory Routes

- 1) Single/Dual-Carriageway Relationship
- 2) Concurrent Named Routes Relationship
- 3) Mainline and Frontage Road Relationship
- 4) Mainline (Primary Route) & Managed Lanes (HOV, HOT) Relationship
- 5) Named Routes break at:
 - State/County/Town/Parish Boundaries;
 - Continuity Intersections: Transition points of divided/undivided geometry


Create a "Junction" at the break point and Establish topological connectivity between the "Inventory Route" Segments & "Junctions"

Route	Route_Active											
РΚ	ObjectID	Integer										
эκ	GlobalID	Integer										
=к	NetworkID	Туре										
=к	StateCode	Туре										
РΚ	RouteID	String(100)										
IL	RoadName	String(500)										
	BeginMeasure	Dec(22,3)*										
	EndMeasure	Dec(22,3)*										
	DateCreated	Date										
	RecordDate	Date										
=к	RecStatusID	Integer										
	RecStatusBeginDate	Date										
	RecStatusEndDate	Date										
	SourceCheckSum	Туре										
	<metadata fields=""></metadata>	Туре										
	Geom	Geometry										


	\wedge \wedge	
Inven	toryRoute_Active	
РΚ	ObjectID	Integer
РΚ	GlobalID	Integer
=K	NetworkID	Туре
=K	RouteID	String(100)
РК	InventoryRouteID	String(100)
=K	OverlapObjectID	String(100)
=K	BeginJunctionID	Integer
=K	EndJunctionID	Integer
	BeginMeasure	Dec(22,3)*
	EndMeasure	Dec(22,3)*
	DateCreated	Туре
	RecordDate	Туре
	RecStatusID	Туре
	RecStatusBeginDate	Туре
	RecStatusEndDate	Туре
	SourceCheckSum	Туре
	<metadata fields=""></metadata>	Туре
	Geom	Geometry

Routes Model Topology: Named Routes and Inventory Route

Requirement 3: Publish Route Topology: Inventory Routes

Requirement 3: Publish Route Topology – Route Concurrencies

3501 843660.43

3502 843640.48

942948.11

943084.84

78.302

78.33

Breakout #1 [20 Minutes] Debrief and Polling [10 Minutes]

Breakout Group 1: Patrick	Breakout Group 2: Jim Meyer &	Breakout Group 3: Greg Ciparelli &
Whiteford & Joe Breyer	Abhishek Bhargava	Justin Brunetti
Topic 1.1, 1.2, 1.3	Topic 2.1, 2.2	Topic 3.1

Breakout Groups Debrief [2 Minutes each] and Polling Questions

- » Topic 1.1: Business Use Cases for Publishing Routes Model with Z-Values
- » Topic 1.2: Authoritative Data Sources for Z-Values
- » Topic 1.3: Density of Vertices with Z-Values
- » Topic 2.1: Business Use Cases for Publishing Dual Geometry

Use Case 1: Travel Demand Modeling	Use Case 2: Safety Analysis	Use Case 3: Asset Management
------------------------------------	-----------------------------	------------------------------

- » Topic 2.2: Criteria for Dual Geometry for Roads with two directions
- » Topic 3.1: Establish Route Topology Using Inventory Routes. Route Relations:
 (a) Cardinal/Non-Cardinal route (b) Frontage Roads (c) HOV/HOT/Managed Lanes

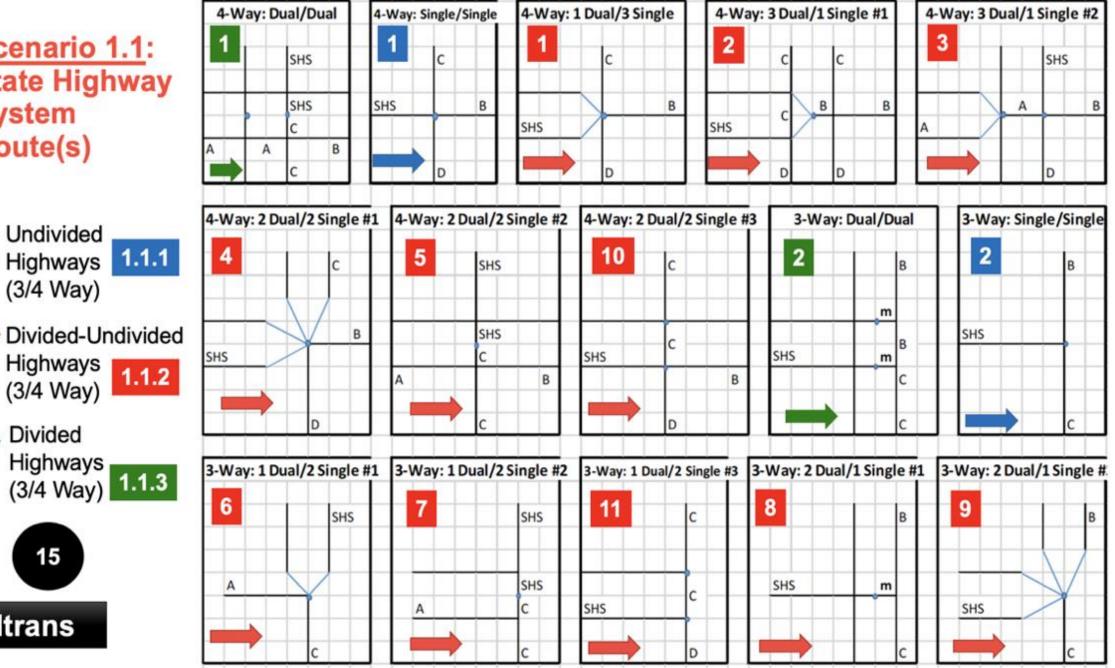
U.S. Department of Transportation Federal Highway Administration

Objective 2: Road Segments Junctions and Intersection Data Model for Routable Network, Connectivity, Topology

Session 3 Objective: Breakout Discussion/Inputs on Listed Rules

Breakout Group 1: Justin Brunetti Patrick Whiteford and Jim Meyer **Breakout Group 2:** Greg Ciparelli Abhishek Bhargava and Joe Breyer

Review Content Related to these Rules; Discuss During Breakouts; Follow-up with Debrief, Polling.

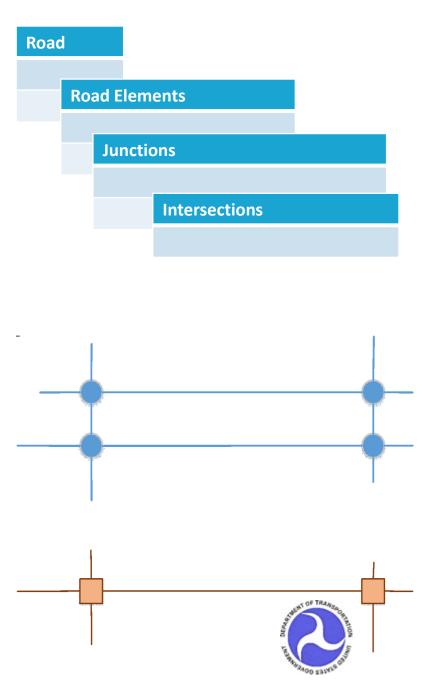

- Rule 4.1: Road Segments should begin and end at Junction Points. Setup as LRS Events and TDM Links.
- Rule 4.2: No tapering/bending of Road Segments at Hashtag Intersections (so that length can be used as true indicator of route length). But, at undivided-undivided intersections tapering happens and starts at junctions?
- Rule 4.3: Junctions created at: Intersection, TAZ Centroid, Bridge, Crosswalk, Intersection Leg (begin/end), etc.
- Rule 4.4: Junctions can coincide with Intersection Point (INTP) at intersections of undivided highways
- Rule 4.5: Topological Features begin/end at junctions: (a) Internal Intersection Connectors (b) Turn Segments (HPMS-12, 13) (c)
 Median Crossover (d) Reverse Segments
- Rule 4.6: Topological Features can be setup as (a) Spatial Features (b) Road Centerline/Routes (c) LRS Events
- Rule 4.7: Median Cut Intersections (MIRE-126) are stored along with other at-grade intersections
- Rule 4.8: Median Crossover (MIRE-62) serves as Topological Connector on Dual Geometry Roads.
- Rule 4.9: Median Crossover (MIRE-62) starts/ends at Junctions, passes through Median-Cut Intersection (MIRE-126)
- Rule 4.10: Turns modeled with three nodes in GIS. Turn Restrictions & Penalty are Junction (Node) Attributes.
- Rule 4.11: Topological Connectivity is created between: (a) Road Segments & Junctions (b) Junctions and Turns (c) Median Crossovers and Junctions (d) Turn Lanes/Segments and Junctions (e) Intersection Routes, Junctions and Intersection Leg

Rules 4.1, 4.2: Routes, Road Segments and Junctions (LRS Events) for Divided and Undivided Highways

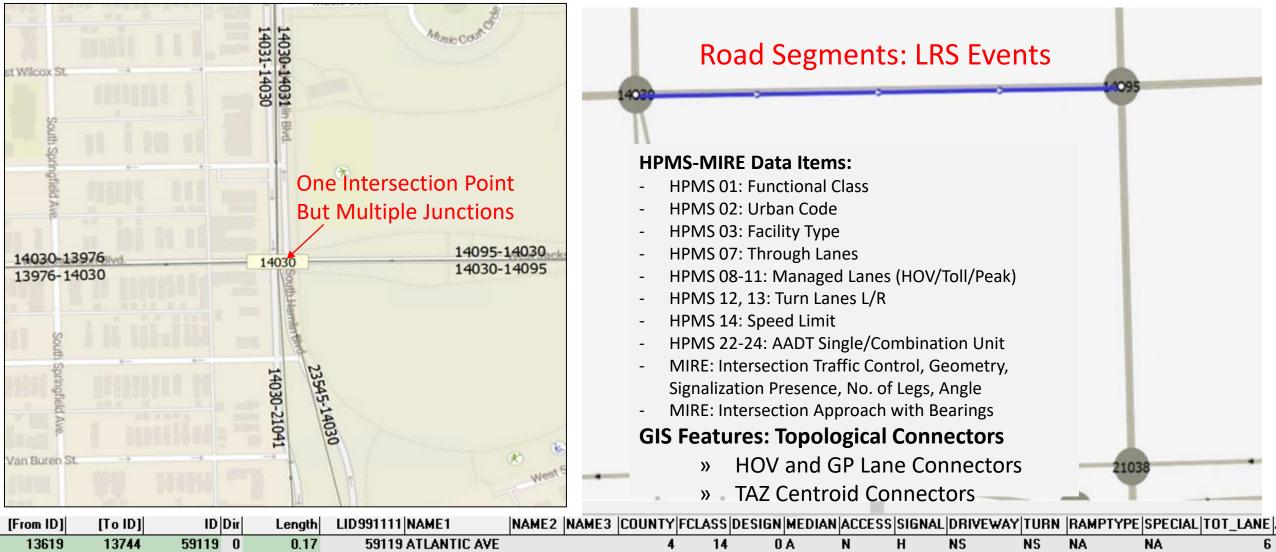
Scenario 1.1: **State Highway** System Route(s)

15

Caltrans


OGC Topology: Geographic Data Format (GDF)

Linear and Spatial Referencing


- + LRS Route, Centerline (Datum), Route-Centerline (M:N)
- ✦ LRS Events
 - Junctions (Nodes): At Intersections, TAZ Centroid*, Bridge, Access Points, Median Cuts, Intersection Median Ends, Intersection Leg Begin/End, State/County/Town/Parish Boundaries (Snap Points)
 - » Intersection Point at Centroid, at a perpendicular offset from LRS Route (e.g.: Median Cut Intersection, MIRE-126)
 - » Road Segment: Junction to Junction
- Spatial Features: Topological Features
 - » Connectors
 - » Turn Segments/Lanes (HPMS 12, 13)
 - » Median Crossovers (MIRE-62)

Connectivity:

- + Road Segments and Intersection Parent-Child Data Relationship
- Junctions (Nodes) with Road Segments, Connectors, Turn Segments/Lanes, Median Crossovers, Reverse Route Segments, Inventory Routes, Continuity Intersection Points

Rules: 4.1, 4.2, 4.3, 4.3, 4.4 BUSINESS USE CASE 1: TRAVEL DEMAND MODELING SYSTEMS. SEND ROAD SEGMENTS, NODES

			2											—
13619	13744	59119	0 0.17	59119 ATLANTIC AVE	4	14	0 A O	N	Н	NS	NS	NA	NA	6
13744	13732	59124	1 0.07	59124 CLASSON AVE	4	16	0 N	N	Н	NS	NS	NA	NA	2
13744	13873	59123	0 0.16	59123 ATLANTIC AVE	4	14	0 A 0	N	Н	NS	NS	NA	NA	6
13688	13744	59118	1 0.29	59118 CLASSON AVE	4	16	0 N	N	Н	NS	NS	NA	NA	1

Rule: 4.1 and 4.2 TDM Link and Node Attributes

ERD of Road Network and Intersections in LRS and GIS-Based TDM Systems

GIS-Based TDM System (TransCAD, VISSUM, AIMSUM)

Link Attributes
ID
From Node ID
To Node ID
Direction
Length
Functional Class
Facility Type/Link Type
Area Type
Auto/Truck tolls

Number of Lanes

Parking Restriction

Truck/HOV Usage

Median

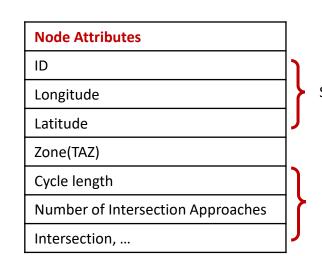
Access Control

Signal Density

Turn Lane

Ramp Type

Bridge, Tunnel,...


Software default fields

Important general classification, used to calculate link speed and capacity

Components of generalized cost used for model pathbuilding

Time of day characteristics used to build period networks

Model specific attributes used to compute the appropriate physical link types together with attribute listed above

Software default fields

Intersection flags used to identify the nodes with turning restrictions and penalties.

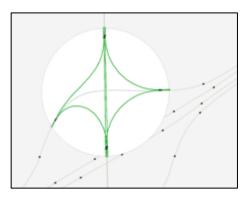


Illustration of Turning Movements at Intersections in Emme Network (Chicago Metropolitan Agency for Planning Model)

Illustration of TransCAD Network Link IDs, Topological and Flow Directionality (New York Best Practice Model)

Labels:

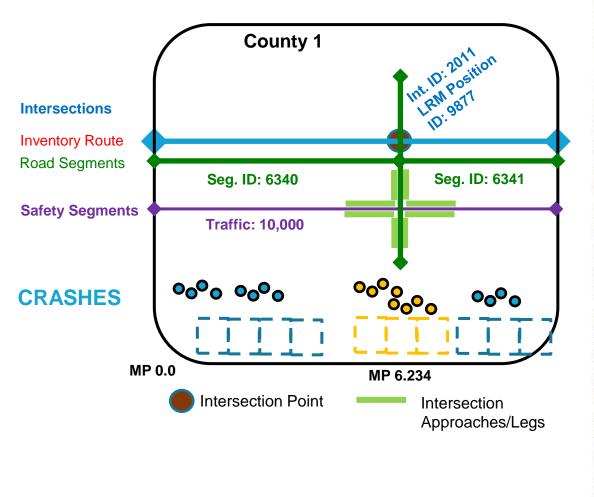
- Node ID (black)
- Link ID (red)
- Direction(green):

O=two-way, 1=with topo, -1=opposite topology

- From Node ID (blue) : topological direction
- To Node ID (blue) : topological direction

Michigan Travel Demand Modeling Network (Emme)

2


		5011-21780	2016-5011 - 1105-5585	5014-501	1	Ī	Nodes: A	A Node Shape		ot have to k x	oe at an Inte		, e.g.: (DATA2	CT Tie		ISINTERSEC
	21780		105 4-21780			5014	1971	Point		302824.18757	1750232.1251	0	0	0		1
		21779 21779-5015	9			5014 115	1972	Point	5012	303237.28123	1713073.9999	0	0	0	0	0
		21779-5016	5011-501	5016-5015			1973	Point	5013	302948.28115	1713000.625	0	0	0	0	0
		501	5	-			1974	Point	5014	303619.90612	1752033.0001	0	0	0	0	0
501			9387				1975	Point	5015	303722.56241	1751880.125	0	0	0	0	0
			5016-19387				1976	Point	5016	304274.68762	1750151.9999	0	0	0	0	1
			5016 5				1977	Point		308747.37487	1833742.375	0	0	0		1
			19387-5(1978	Point	5018	310742.31248	1834809.9999	0	0	0	0	0
	Turn	5	193													
A	OID	ID	JNODE	INODE	KNODE	TPF	DATA1	DATA2	DATA3	@avaut	@avbqt	@avh2t	@avh	n3t	@avhqt	@avlqt
	0	5014-5011-5016	5011	5014	5016	-1	0	0	(33.200001	9.200001	1.43534	0.302	2932 1	133.20001	3
	1	5014-5011-21780	5011	5014	21780	0	0	0	() 0	0	0)	0	0	0
	2	5014-5011-23853	5011	5014	23853	-1	0	0	(95.089836	42.199997	16.715115	4.339	9508 3	3313.8748	14.8
	3	5016-5011-5016	5011	5016	5016	0	0	0	() 0	0	0)	0	0	0
	4	5016-5011-21780	5011	5016	21780	-1	0	0	(2.4	0	0.032135	0.007	7318	1.6	0
	5	5016-5011-23853	5011	5016	23853	-1	0	0	(310.98734	195.79999	44.966614	12.196	6842 7	7051.7607	44.600002
	6	23853-5011-5016	5011	23853	5016	-1	0	0	(135.8	34.400002	7.572992	1.774	4333 2	2145.1406	9.6
	7	23853-5011-21780	5011	23853	21780	-1	0	0	(610.44226	308.18484	86.436714	23.78	7447 1	10592.301	37.374294

BUSINESS USE CASE 2: SAFETY SEGMENTS MODELING

#CTDOT. #ODOT

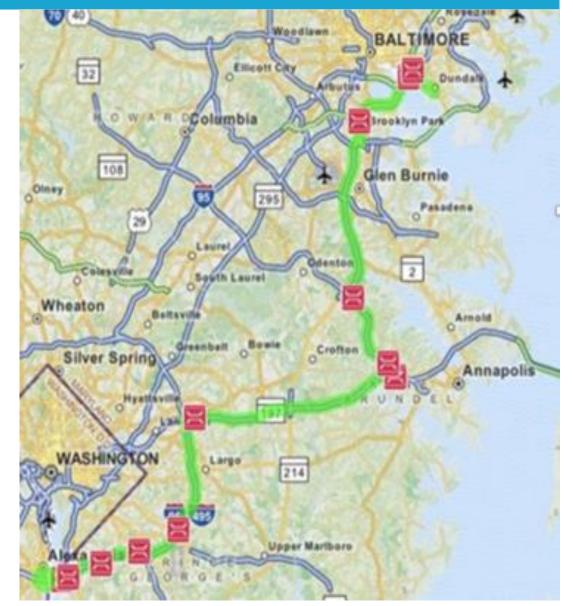
Business Use Case for:

Rule 4.1: Publish Road Segments for MIRE, Different from Road Segments for Travel Demand.

I. Road Segments

13. Segment Length FDE 14. Route Signing 15. Route Signing Qualifier 16. Coinciding Route Indicator 17. Coinciding Route - Minor Route Information 18. Direction of Inventory FDE 19. Functional Class FDE 20. Rural/Urban Designation FDE 21. Federal Aid FDE 22. Route Type FDE 23. Access Control FDE 24. Surface Type FDE 25. Total Paved Surface Width 26. Surface Friction 27. Surface Friction Date 28. International Roughness Index (IRI) 29. International Roughness Index (IRI) Date 30. Pavement Condition (Present Serviceability Ra 31. Pavement Condition (PSR) Date 32. Number of Through Lanes FDE 33. Outside Through Lane Width 34. Inside Through Lane Width 35. Cross Slope 36. Auxiliary Lane Presence/Type 37. Auxiliary Lane Length 38. High-occupancy Vehicle (HOV) Lane Presence

III. INTERSECTION LEG (EACH APPROACH)


128. Intersection Identifier for this Approach 129. Unique Approach Identifier FDE 130. Approach AADT 131. Approach AADT Year 132. Approach Mode 133. Approach Directional Flow 134. Number of Approach Through Lanes 135. Left-Turn Lane Type 136. Number of Exclusive Left-Turn Lanes 137. Amount of Left-Turn Lane Offset 138. Right-Turn Channelization 139. Traffic Control of Exclusive Right-Turn Lanes 140. Number of Exclusive Right-Turn Lanes 141. Length of Exclusive Left-Turn Lanes 142. Length of Exclusive Right-Turn Lanes 143. Median Type at Intersection 144. Approach Traffic Control 145. Approach Left Turn Protection 146. Signal Progression 147. Crosswalk Presence/Type 148. Pedestrian Signal Activation Type 149. Pedestrian Signal Presence/Type 150. Crossing Pedestrian Count/Exposure 151. Left/Right Turn Prohibitions 152. Right Turn-On-Red Prohibitions 153. Left Turn Counts/Percent 154. Year of Left Turn Counts/Percent 155. Right Turn Counts/Percent 156. Year of Right Turn Counts/Percent

[Business Use Case: 4] Oversized/Overweight Vehicle Routing

Rule 4.1: Road Segments with Attributes (Different from TDM) Rule 4.10: Turns, Turn Restrictions and Turn Penalty as Junction (Node Attributes)

ℵ Number of Left/Right Turning lanes/segments on road

- Turn Restrictions at Intersections (e.g. due to intersection angle, prohibited u-turn; although OS/OW vehicles may not be making any u-turns)
- Median crossovers (median cut intersections) are likely not needed. But point location of at-grade and access road intersections is needed as they are decision points in the road network.
- Information about both directions of a road, such as speed limit, lane width, shoulder width, passing/no-passing zones, presence/absence of HOV/Toll lanes.
 Basically, any information that allows a truck to be routed successfully from one origin to destination.
- Bridge locations and route carried, route under/over a bridge. Also, National Bridge Inventory attributes like vertical clearance, horizontal clearance, structure length, width. The bridges can be represented as points on the map. Linear bridge not necessary.

Hashtag Intersections

Rule 4.1: Road Segments for Travel Demand Modeling from LRS Events with HPMS data Rule 4.2: No Tapering/Bending of Road Segments at Hashtags. Rule 4.3: Junctions created at Intersections. Store Route Measure Values

• OGC GDF and IFC Intersection & Property Set (using HPMS-MIRE)

INT ID	Intersection Type (MIRE-111)	Geometry Type (MIRE-126)	Traffic Control Type (MIRE-121)	No. of Legs (MIRE-125)	Geom. (XYZ)
1000				8	X,Y,Z

Road Segments -

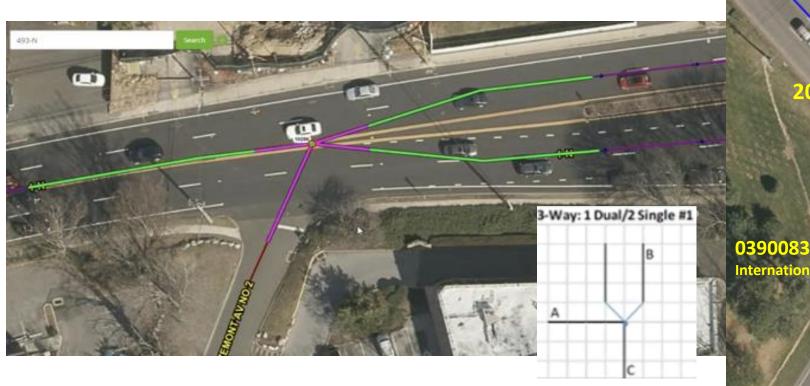
ID	Begin Junc.ID	End Junc.ID	Begin INT ID	End INT ID	Route	Begin Measure	End Measure
1	257	250	1000	500	1-S	6.93	10.93
2	400	421	500	1000	1-N	2.93	6.93
3							

OGC GDF Junctions

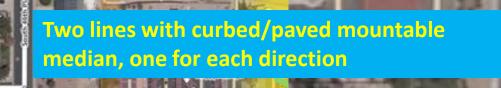
	Junc.ID	INT ID	Geom.
2	421	1000	X ₁ ,Y ₁ ,Z ₁
	257	1000	X ₂ ,Y ₂ ,Z ₂
	258	1000	X ₃ ,Y ₃ ,Z ₃
	118	1000	X ₄ ,Y ₄ ,Z ₄

37-5 113 3 4 199° 1-22 B 2340 Connet

Junction Route Measures


➢ INTA-INTERSECTIONAPPROACH

Junction ID	Route	Measure		
421	137-S	0.00		
421	1-N	6.93		
257	137-S	0.01		
257	1-S	6.93		
258	1-S	0.0		
258	137-N	0.01		
118	137-N	0.01		
118	1-N	6.94		
118	493-N	0.34		


APPR_ID	ROUTE_ID	BEGIN_POIN	END_POINT	APPR_DIR_F	NUM_THRU_L	LT_LN_TYPE	APPR_SIDEW APPR_PED_S
000001-135-094	1-N	6.945	6.965	2	6	2	Other MIRE
000001-135-272	1-N	6.905	6.925	2	6	2	Attributes for
000001-135-271	1-S	6.905	6.925	2	6	2	Intersection Legs
000001-135-094	1-S	6.945	6.965	2	6	2	
000001-135-003	137-N	0.015	0.035	2	4	2	
000001-135-004	137-S	0.015	0.035	2	4	2	
000001-135-199	493-N	0.315	0.335	2	4	2	

Topics: 4.1, 4.2, 4.5: Location of Junctions and Start/End of Road Segments at Divided-Undivided Highway Intersections; Intersection Approach not connected to Junctions Topological Features (internal intersection connectors) begin/end at Junctions

- □ Bending Divided Highway Routes. When to Start Tapering? At Junctions
- □ Where do Intersection Legs and Road Segments end?
- Bend Road Segments at Junctions
- Road Segments End at the Junction Points

Topics: 4.1, 4.2: Location of Junctions and Start/End of Road Segments at Divided/Undivided Highway Intersections

West Baseline Road

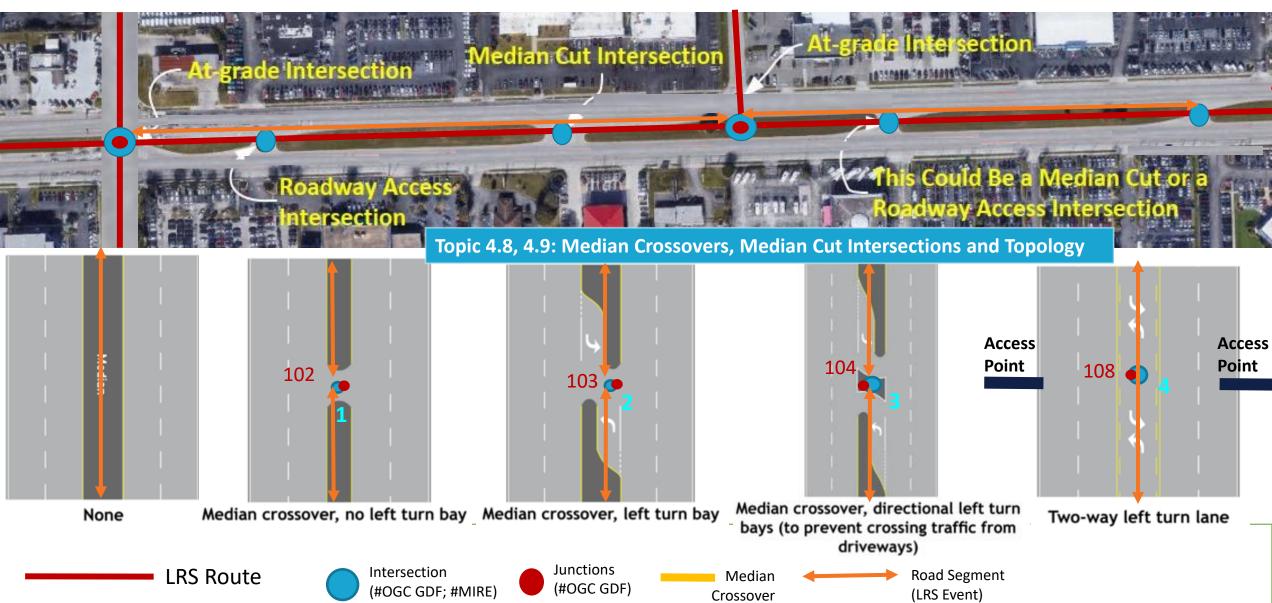
Open Street Map intersection features: intersection points, legs, turn lanes and Road Segments that Taper into the Intersections

 At-Grade and Median Cut Intersections
 Dual Geometry Imported into Travel Demand Modeling System (#Ohio) and for Asset Risk and Resiliency Analysis (#Caltrans)

11 1 1

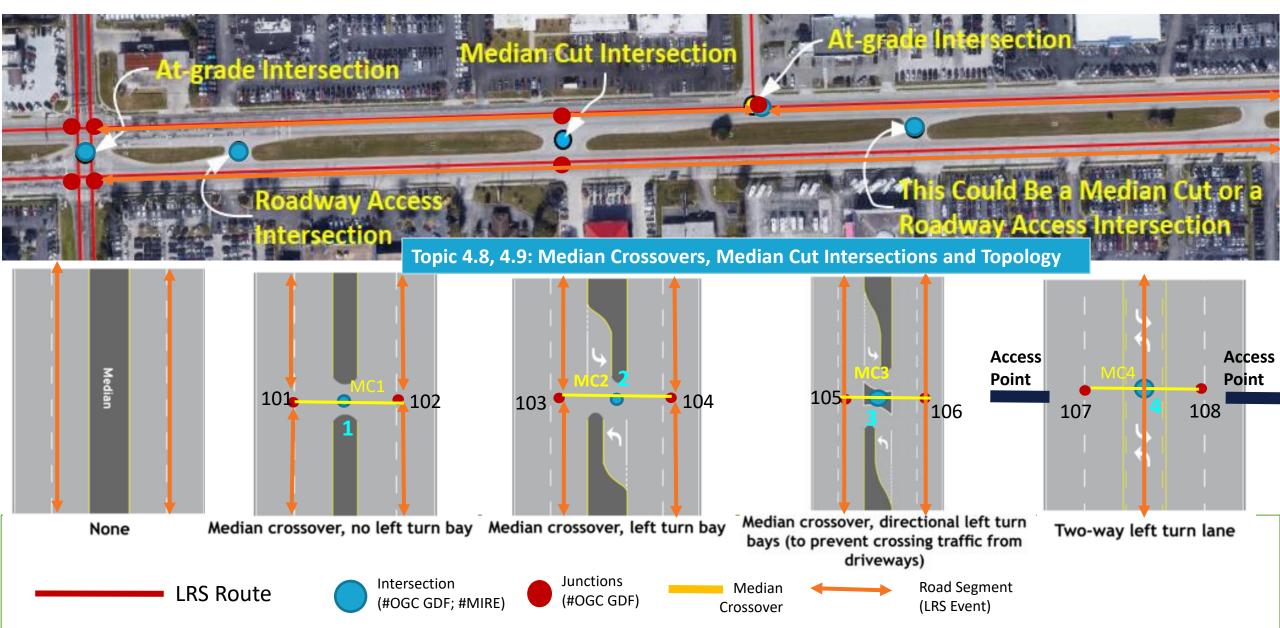
• No turning/lane information

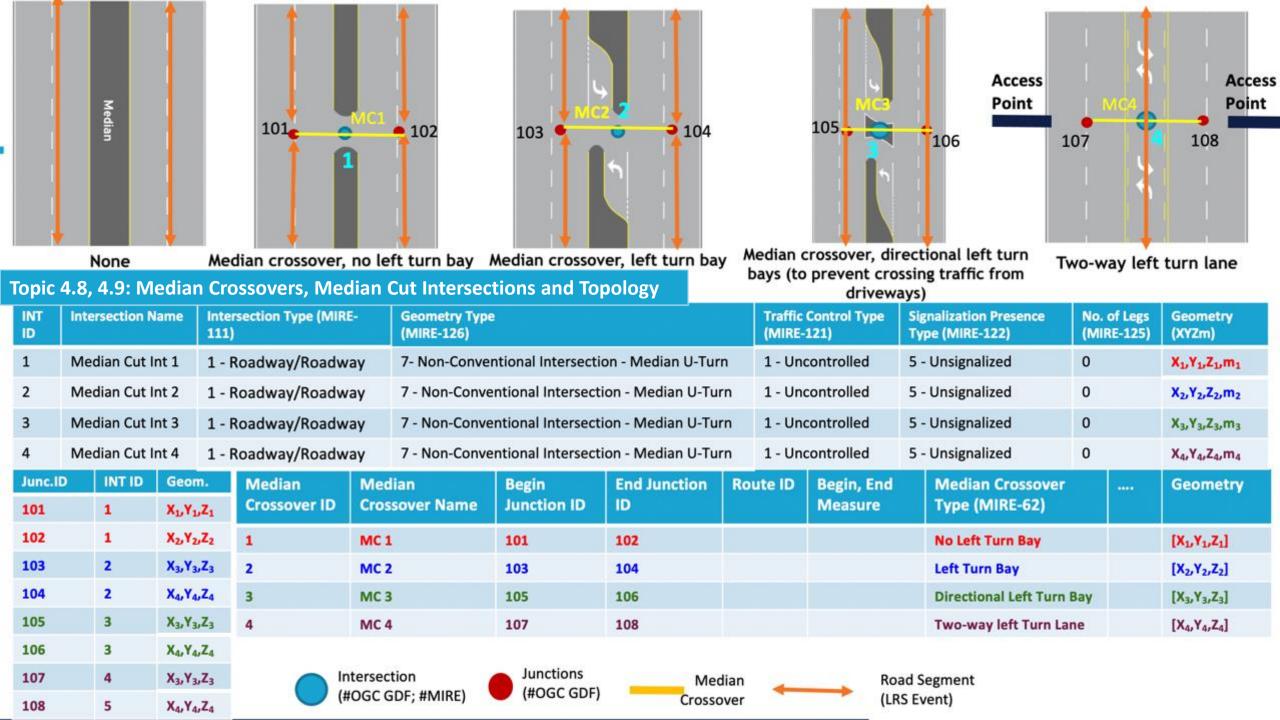
• Link tags are derived from

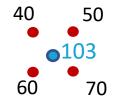

TIGER import

FIF

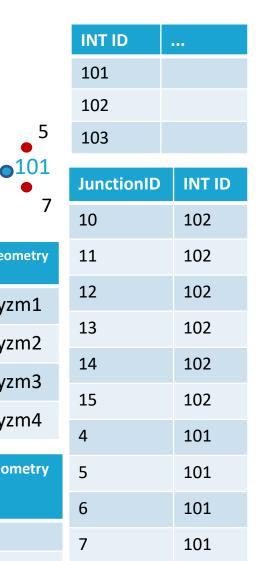
Edits by GREGIMMPI Statists, Werewombat, and 22 others 🔺 Alb


Routes Model Scenario: Single Geometry

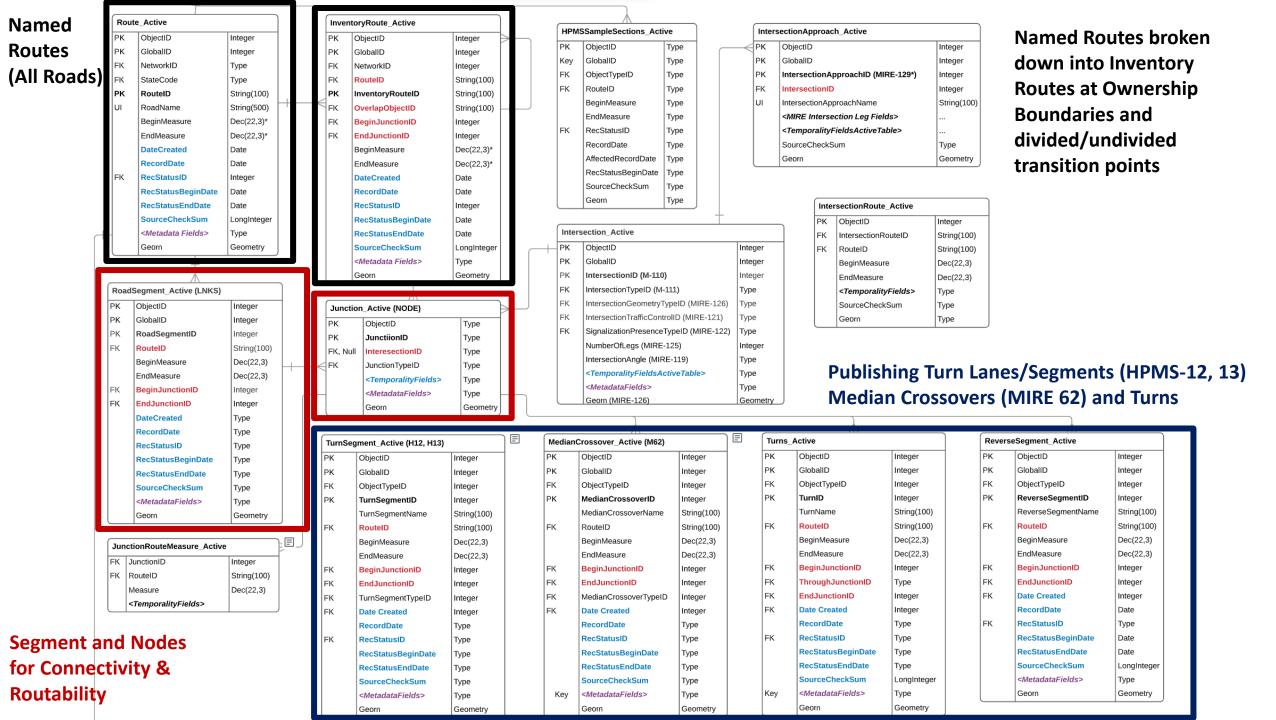

Topic: 4.10 (b) Modeling Turn Restrictions at Junction (Node) Attributes)?


Routes Model Scenario: Dual Geometry

Topic: 4.10 (b) Modeling Turn Restrictions at Junction (Node) Attributes)?



Rules: 4.5 and 4.6: Turn Segments/Lanes (HPMS-12, 13) Can be Setup as GIS Features, LRS Routes or Events



6

Turn Segments Start & End at Junctions

TurnSegment_Active (H12, H13)							
PK	ObjectID	Integer					
PK	GlobalID	Integer					
FK	ObjectTypeID	Integer					
PK	TurnSegmentID	Integer					
	TurnSegmentName	String(100)					
FK, Null	RouteID	Туре					
Null	BeginMeasure	Туре					
Null	EndMeasure	Туре					
	TurnSegmentTypeID	Integer					
FK, Null	BeginJunctionID	Туре					
FK, Null	EndJunctionID	Туре					
FK	RecStatusID	Туре					
	RecordDate	Туре					
	AffectedRecordDate	Туре					
	RecStatusBeginDate	Туре					
	SourceCheckSum	Туре					
Null	Geom	Geometry					

	Road Seg ID	Road Seg. Name		Begin lunction ID	End Junct	ion ID	Begin INT ID	Ene	d F ID	Route ID	Begin, End Measure	Geometry	11	102
at	1001	Link 1		70		103		10		I-70 EB		xyzm1	12	102
	1002	Link 2	1	14	6		102	10	1	I-70 WB		, xyzm2	13	102
er	1003	Link 3	4	1	10/1	1 (along)	101	10	2			-	14	102
er er												xyzm3	15	102
er	1004	Link 4	1	12	50		102	10	3			xyzm4	4	101
(100)	Turn	Turn Seg.	Begin		nd	Route II		gin,	Turn		Topology	Geometry	5	101
	Seg. ID	Name	Junct ID		unction D		Enc Me	asure	Segn Type		Connector		6	101
er	1	LCTurn-1	10	1	.5				Char	nelized			7	101
	2	TC-2	10	1	.1								40	103
	3	TC-3	11		.2	I-70 WI	3 -	-			Yes	Yes	50	103
	4	TC-4	12	1	.3	-	-				Yes	Yes		
	5	TC-5	13	1	.4	I-70 EB					Yes	Yes	60	103
netry	6	TC-6	11	1	.5						Yes	Yes	70	103

Session 3 Objective: Breakout Discussion/Inputs on Listed Rules

Breakout Group 1: Justin Brunetti Patrick Whiteford and Jim Meyer **Breakout Group 2:** Greg Ciparelli Abhishek Bhargava and Joe Breyer

Review Content Related to these Rules; Discuss During Breakouts; Follow-up with Debrief, Polling.

- Rule 4.1: Road Segments should begin and end at Junction Points. Setup as LRS Events and TDM Links.
- Rule 4.2: No tapering/bending of Road Segments at Hashtag Intersections (so that length can be used as true indicator of route length). But, at undivided-undivided intersections tapering happens and starts at junctions?
- Rule 4.3: Junctions created at: Intersection, TAZ Centroid, Bridge, Crosswalk, Intersection Leg (begin/end), etc.
- Rule 4.4: Junctions can coincide with Intersection Point (INTP) at intersections of undivided highways
- Rule 4.5: Topological Features begin/end at junctions: (a) Internal Intersection Connectors (b) Turn Segments (HPMS-12, 13) (c)
 Median Crossover (d) Reverse Segments
- Rule 4.6: Topological Features can be setup as (a) Spatial Features (b) Road Centerline/Routes (c) LRS Events
- Rule 4.7: Median Cut Intersections (MIRE-126) are stored along with other at-grade intersections
- Rule 4.8: Median Crossover (MIRE-62) serves as Topological Connector on Dual Geometry Roads.
- Rule 4.9: Median Crossover (MIRE-62) starts/ends at Junctions, passes through Median-Cut Intersection (MIRE-126)
- Rule 4.10: Turns modeled with three nodes in GIS. Turn Restrictions & Penalty are Junction (Node) Attributes.
- Rule 4.11: Topological Connectivity is created between: (a) Road Segments & Junctions (b) Junctions and Turns (c) Median Crossovers and Junctions (d) Turn Lanes/Segments and Junctions (e) Intersection Routes, Junctions and Intersection Leg

U.S. Department of Transportation Federal Highway Administration

Summary, Wrap-Up and Next Steps

W	orkshop Summary		ublishing Routes s & Concurrency	Objective 2: Modeling, Road Segments, Junctions, Intersections, Turn Segments, Median Crossovers & Turns						
ID	Business Use Case Name and Description	Route Elevation, Z-Values, Vertical Alignment	Route Topology: Single/Dual, Concurrency, Frontage, HOV	Road Segment: Junction to Junction; and Intersection Points	Topological Connectors: Turn Segments, Median Crossovers	Turns: Restrictions, Penalty for Routing & Turn-by-turn directions				
1	GIS Network for Travel Demand Modeling and Forecasting Systems (e.g. Emme, Cube, TransCAD, Open Street Maps, GMNS)		\odot	\odot		\bigcirc				
2	Safety Analysis – Crash Assignment, Network Screening, Level of Service Score (LOSS); Spatial Econometric Models and Predictive Models for Safety Performance Functions (SPFs) with MIRE & HPMS Items; HSIP Plan;	\bigcirc	\bigcirc		\bigcirc					
3	Bridge and Pavement Life-Cycle Analysis , Risk, Resiliency and Vulnerability Assessment, Flood Impact, Routine Condition Assessment, Work History and Future Work Planning	\bigcirc	\bigcirc		\bigcirc					
4	Oversized/Overweight Heavy Vehicles Permits: Routing, Connectivity, Restrictions; Freight Network Modeling.			\bigcirc		\bigcirc				
5	Road Network for Linear Referencing: LRS Measures, Data Quality, Dominant/Sub, HPMS-ARNOLD, MIRE, Road Mileage		\bigcirc	\bigcirc	\bigcirc					

AEGIST Implementation Activities at PFS States

AEGIST Goals and Objectives	СА	СТ	GA	ID	TN	PA	ОН	KS	AZ	NC
Spatial Data Governance, Management Strategy, Roadmap, Metadata, Data Portfolio, Workshops			\oslash	\oslash	\odot	\odot	\oslash			
Spatial Data Modeling										
Roads Data Modeling & Business Rules DOT, Federal, Local: HPMS, ARNOLD, NG911	\odot					\odot		\odot	\odot	\oslash
Intersections Data Model HPMS 9.0, MIRE, GDF, IFC Roads & Bridge			\oslash							
Data Quality Automation HPMS, MIRE & Assets		\oslash								
Spatial Data Integration and Engineering										
Roads Data Integration, Authoritative Data Mgmt. DOT, Federal, Local Roads Data Sharing & Federation	\odot									
Road Network and Events Data Publication: Pilots Data Model for Data Warehouses. Data Models & Engineering in Data Hubs		\oslash								
Spatial Data Analytics										
Spatial Statistics, Econometrics, AI/ML, Optimization Descriptive, Diagnostics, Predictive, Prescriptive Analytics;						\oslash				