AEGIST GIS-T Workshop

Integrating data from multiple sources for building an open-standards compliant, topologically connected, routable Road Network Data Model

> Abhishek Bhargava, WSP Joe Hausman, FHWA Bill Schuman, Rizing Andréa Compton, Rizing Marc Kratzschmar, Bentley Ian Howell, buildingSMART US

Disclaimer: Information in this deck is subject to change during the AEGIST Project (2019 – 2024)

Workshop Agenda

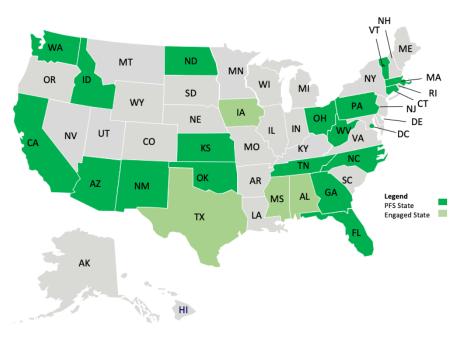
About AEGIST

- » Objectives: Federal, State, Local Agencies, Private Sector
- » **Transportation Data and Business Use Cases:** Complete Streets (Safety), Design/CAD-GIS Integration, Freight, Asset Management, Travel Demand Modeling; ARNOLD, HPMS 9 and MIRE Reporting Requirements
- » Enterprise Data Life Cycle Management, Data Governance, Data Modeling, Data Engineering

About Workshop

- » Workshop Objectives
- » Workshop Schedule: Presentations and Breakout Sessions (Open Discussion and Inputs)

Workshop Presentations (1.5 Hours) and Breakout Sessions (1.5 Hours)


- » Topic 1: Routes, Centerlines, NG911 Roads, Road Names
- » Topic 2: Design-Construction to GIS Data Pipeline via Common Data Environment (BIM and GIS Integration)
- » Topic 3: Modeling Standards, National & International Initiatives: Standard Organizations, S/w Vendors, Projects
- Wrap-Up: Resources & Next Steps

About AEGIST

- Objectives: Federal, State , Local Agencies
- Business Use Cases
- Systems, Applications and Tools
- Data Standards: Management & Governance
- □ Private Sector, Standard Development Organizations

About AEGIST

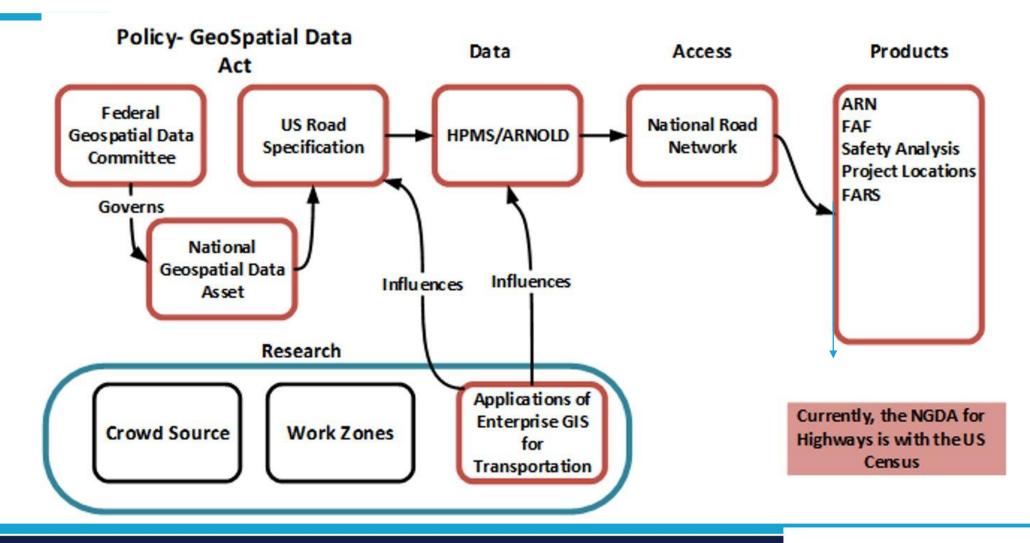
Pooled Fund Study (PFS): FHWA and States Enterprise Data Management and Governance Standards, Processes, Tools and Technology

www.gisintransportation.com

SPATIAL DATA MODELING

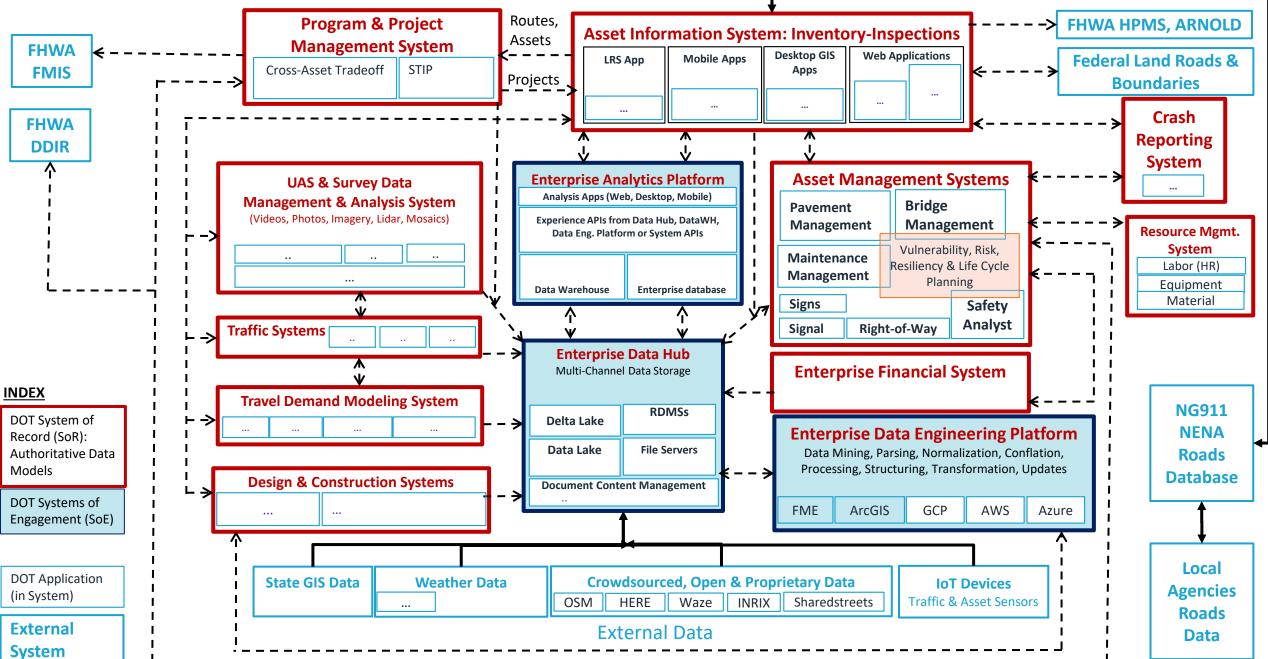
- © Linear Referencing System: Routes, Single/Dual Geometry, Concurrencies, Temporality
- © Other Enterprise Systems: Asset Management, Traffic, Safety, Design, Construction, etc
- © Linear/Spatial Referencing Data Models and Data Structures: Routes, Road Segments, Junctions, Intersections, Turn Segments, and Topological Connectors
- ③ GIS Features and LRS Events Data Modeling across various Enterprise Systems: GIS-LRS, Asset Management, Design, Construction, Unmanned Aerial Systems (UAS), Project Management and Programming
- ⁽¹⁾ Publication Data for Users at DOTs, Local Agencies, FHWA, Private Sector Agencies
- ⁽¹⁾ Data Quality, Topology, Data Availability, Readiness (FAIR), Authoritative Sources

SPATIAL DATA INTEGRATION, ENGINEERING & DELIVERY

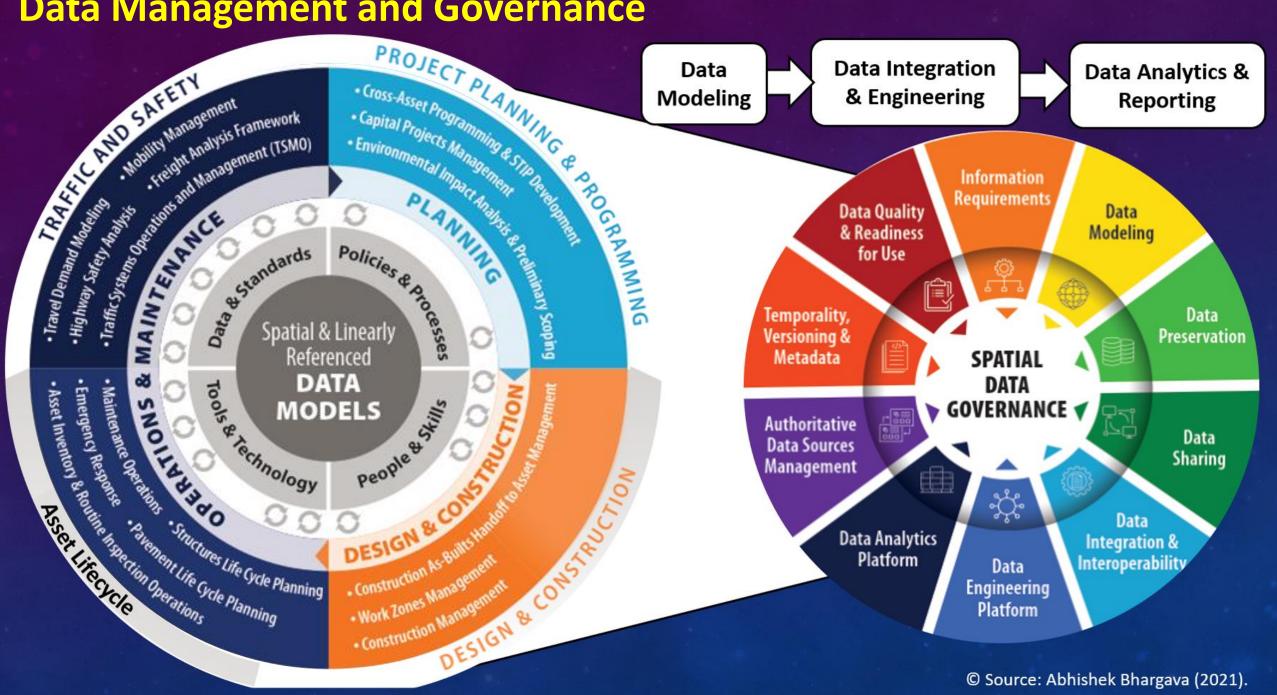

- © Data Hubs and Data Engineering Platforms for Preparing Data
- © Data Conflation, Integrating and Engineering Business Data using LRS.GIS
- © Governance of (Spatial) Data Engineering Platform: Systems, Applications, Tools

SPATIAL DATA ANALYTICS

© Analytics Platforms: Open Data Portals, Data Warehouses, Enterprise Databases


- © Spatial Statistics, Econometrics, AI/ML, Big Data Analytics
- © Governance of (Spatial) Data Analytics Platform: Systems, Applications, Tools

About AEGIST AEGIST, HPMS 9 and National Road Network

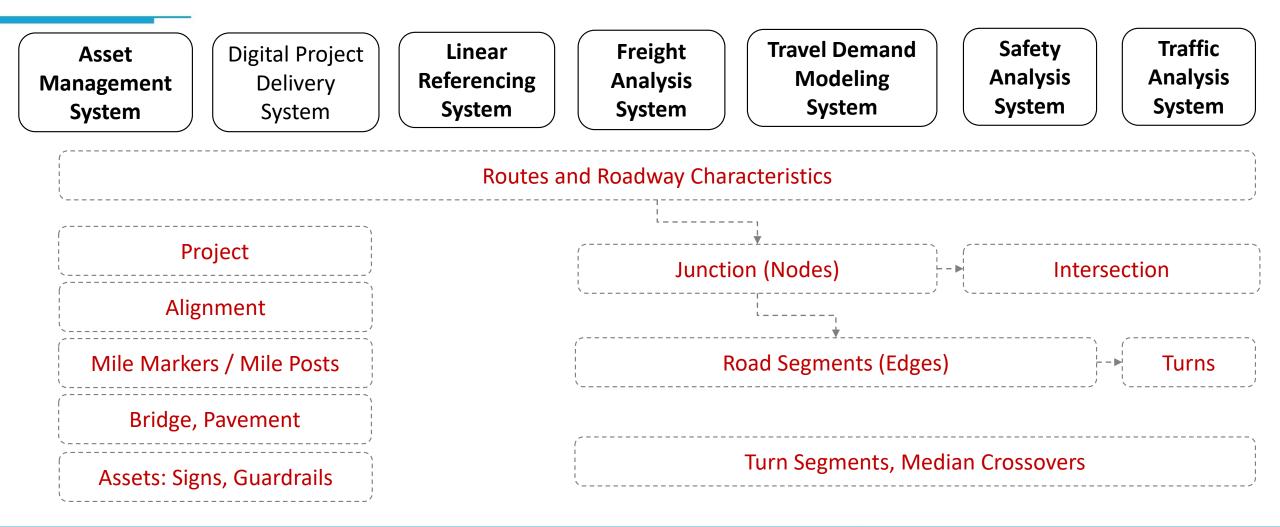


Building Information Modeling (BIM): Enterprise Systems, Applications, Tools and Processes Deployment Activities

©Abhishek Bhargava (2021)

Data Management and Governance

About Workshop


Objective

□ Schedule

- Presentations
- Open Discussion and Survey
- Breakout Sessions and Roundtable Discussions

Engagement Platform

Workshop Objective: Road Network Data Model Development for Enterprise Use Data Assets

Workshop Objective: Road Network Data Model Development for Enterprise Use Data Models

Asset Management System System	Linear Referencing System	Freight Analysis System	Travel Demand Modeling System	Safety Analysis System	Traffic Analysis System			
FMIS NBI, HPMS, J	ARNOLD Routes an	nd Roadway Char	acteristics	MIRE	NPMRDS			
NG911 RCL & Nodes USRS Road Profiles								
Project		Junctio	on (Nodes)	- Inte	rsection			
Alignment	Open Street Ma	ps Ways & Node	s [!] OGC Ge	eographic Data	Format, CityGML			
Mile Markers / Mile Posts		Road Segments (Edges)						
Bridge, Pavement	Industry Foundation	Generalized Modeling Network Specification (GMN						
Assets: Signs, Guardrails,	Classes (IFC)	Turn Segments, Median Crossovers						

Private Sector Data Vendors – Asset Data (including Roads), Traffic Data, Safety Data, Traveler Data, Lidar Data, Imagery Data

National and International Data Standard Development Organizations – ISO, OGC, W3C, AASHTO, FHWA, buildingSMART, etc.

Workshop Objective Road Network Data Model Management and Governance

USE CASES

- Freight Origin-Destination Routing Analysis
- Travel Demand Modeling
- Complete Streets: Safety Data Modeling and Analysis
- Traffic Analysis Systems
- Asset Performance Management & Life Cycle Analysis
- ARNOLD-HPMS-MIRE Reporting, National Bridge Inventory Reports
- Equity in Project Planning & Programming
- Design/CAD to GIS-Asset Management As-Builts asset data handoff

Data Assets in Road Network Data Model:

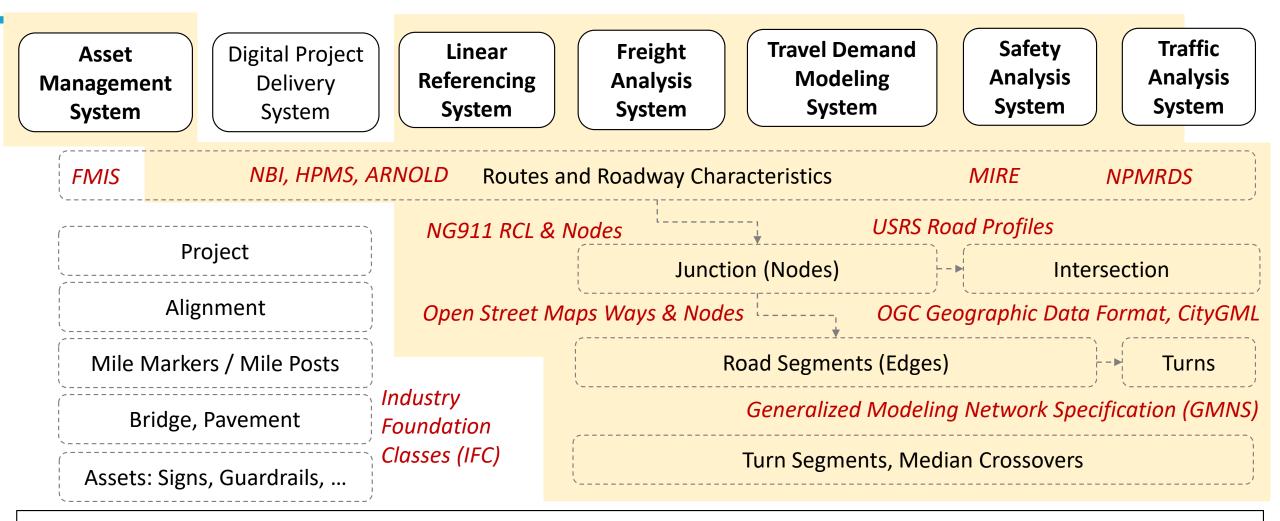
- Centerlines/Datum/ Anchor Sections (NCHRP-20-27)
- Routes: Vehicle, Bike Routes, Pedestrian Crosswalks and Sidewalks
- Intersections, Junctions (Nodes) or Network Links/Nodes (NCHRP 20-27), Intersection Legs
- Road Segments: NG911, Travel Demand Modeling (Links), Pavement, Traffic, Maintenance, Project Segments, HPMS Road Identification Segments
- Assets: Linear Bridges, Culverts, Guardrails, Medians, Signs (including Mile Markers), etc.

<u>Data Standards</u>: National & International Initiatives – Standard Development Organizations Private & Public Sector Agencies

Workshop Schedule

Presentations, Open Discussion, Survey and Breakout Sessions

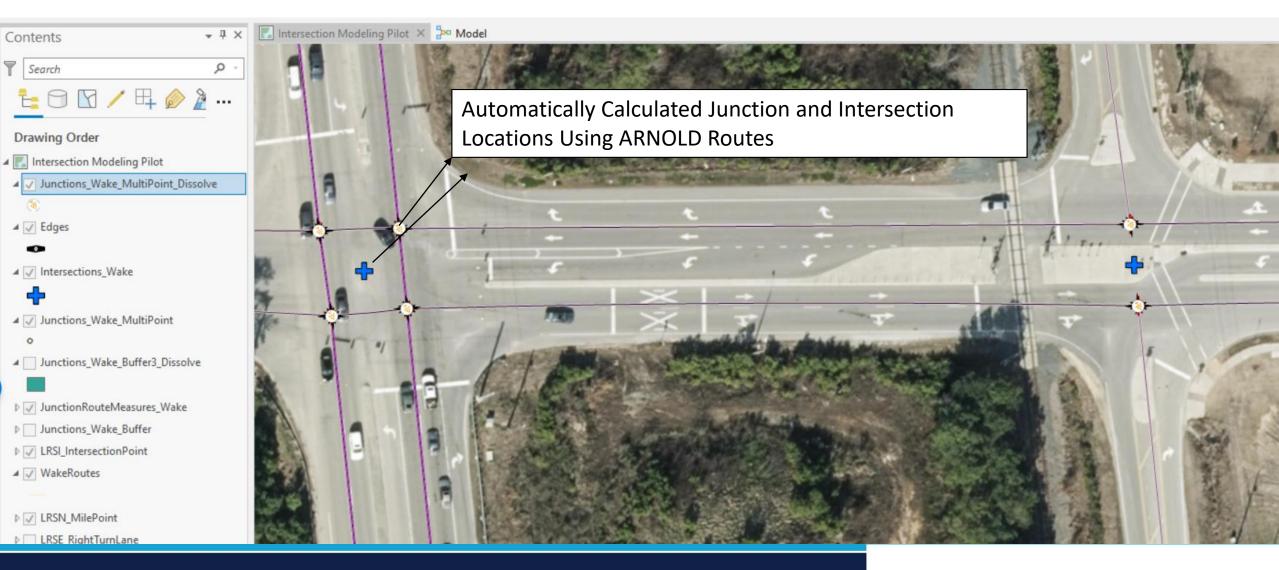
 About AEGIST, Workshop and Workshop Background (Business Use Cases) 									
 Topic 1: Engineering Road Network Data Model using LRS, Open Street Maps, NG911, LiDAR, Imagery 60 									
» Presentation 1: Building Topologically Connected Road Network Model with Intersections, Links, Nodes [30 Minutes]									
» Breakout Session #1: Open Discussion and Survey	[30 Minutes]								
BREAK: 10 Minutes									
• Topic 2: Acquiring and Integrating Road Network Data from Project, Design, Construction Systems	75 Minutes								
» Presentation 2: Existing Practices: Pennsylvania Turnpike Commission	[20 Minutes]								
» Presentation 3: Emerging Practice: Digital Twin, CDE & IFC Based Data Migration: Tennessee & Pennsylvania	[25 Minutes]								
» Breakout Session #2: Open Discussion and Survey	[30 Minutes]								
BREAK: 10 Minutes									
Topic 3: Governing Road Network Data across Sources using Standards	50 Minutes								
» Presentation 4: National and International Agencies Collaboration and Initiatives for Standardizing Roads Modeling	[20 Minutes]								
» Breakout Session #3: Open Discussion and Survey	[30 Minutes]								
 Wrap-Up: Resources and Next Steps 	15 Minutes								


Topic 1: Integrate Multiple Data Sources

Building Road Network Data Model

□ Integrating Data from following Data Sources

- LRS Data: Routes, Roadway Characteristics
- Imagery
- ✤ NG911 Road Centerlines, Local Agencies
- Federal Lands (BLM, BOR, ...)
- Open Street Maps
- LiDAR Data: MIRE FDEs


Topic 1 Objective: Road Network Data Model Development for Enterprise Use Engineering Junction, Intersection and Roads Segments from LRS Routes, NG911 Roads, Lidar/Imagery, Open & Proprietary Roads Datasets

Private Sector Data Vendors – Asset Data (including Roads), Traffic Data, Safety Data, Traveler Data, Lidar Data, Imagery Data

National and International Data Standard Development Organizations – ISO, OGC, W3C, AASHTO, FHWA, buildingSMART, etc.

Road Network Data Model LRS/ARNOLD Routes for Creating Junctions and Intersections

Road Network Data Model LRS/ARNOLD Routes for Creating Junctions and "Associating" them with Intersections

1111 - Undivided-Undivided - NS-89568 and NS-96258 [WAKE]

600

Д

 \square

÷.

(i)

1112 - Undivided-Undivided - NS-977 and NS-97396 [WAKE]

X

1

1

1

1

1

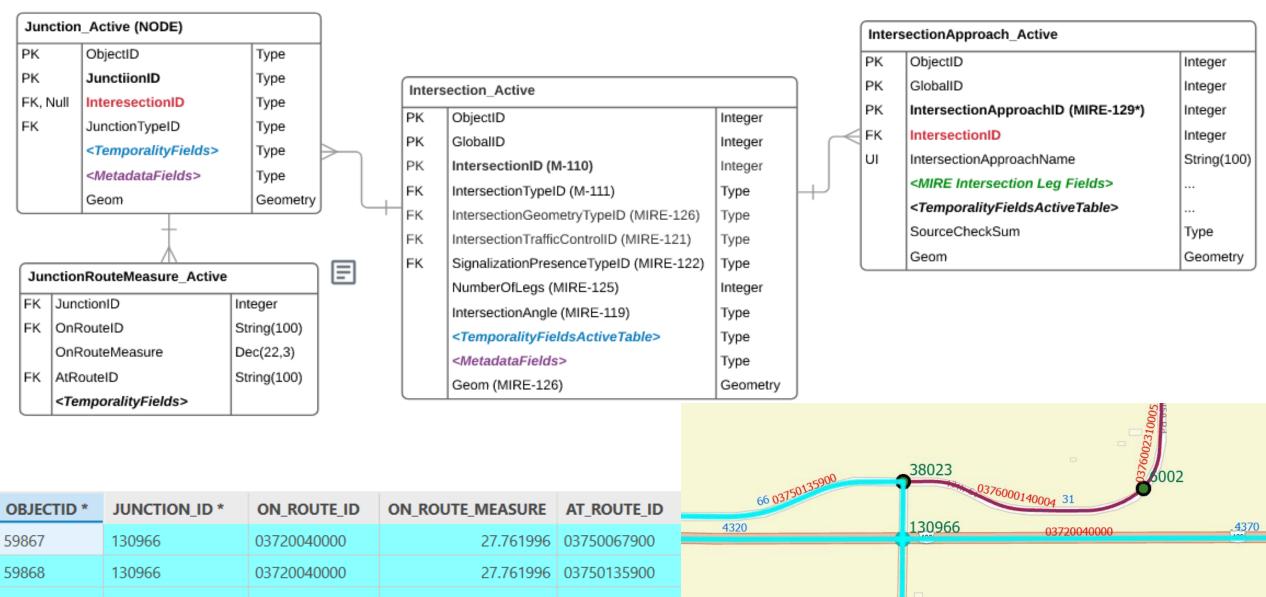
1222 - 3 Divided - 1 Undivided - SR-3126 & NS-99594 - 2 **Topological Connectors** [WAKE]

1222 - 3 Divided - 1 Undivided - SR-1313 (w Turn Lane), RMP, NS-94992 - 2 Topological

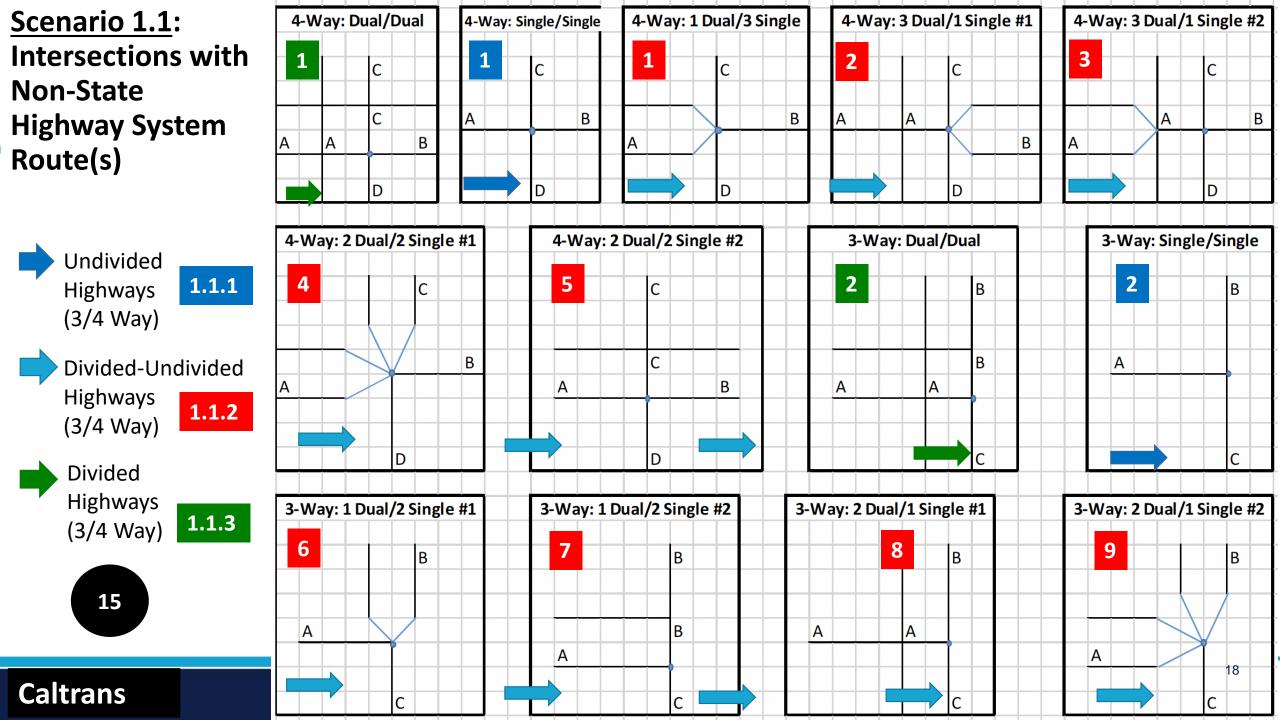
1225 - 2 Divided - 2 Undivided - NC-55 and

SR-1621 [WAKE]

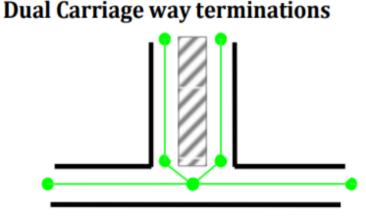

Connectors [WAKE]

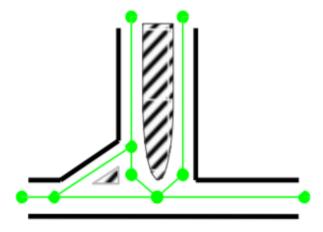

C

1125 - 2 Divided - 2 Undivided - NC-55 and SR-1621 [WAKE]


1228 - 2 Divided - 1 Undivided - SR-1728 and RMP-797 [WAKE]

59867	130966	03720040000	27.761996	03750067900	
59868	130966	03720040000	27.761996	03750135900	
59869	130966	03750067900	1.052282	03720040000	
59870	130966	03750067900	1.052282	03750135900	
59871	130966	03750135900	0	03720040000	
59872	130966	03750135900	0	03750067900	




LRS Centerline (2D) Modeling Accuracy (LOA)

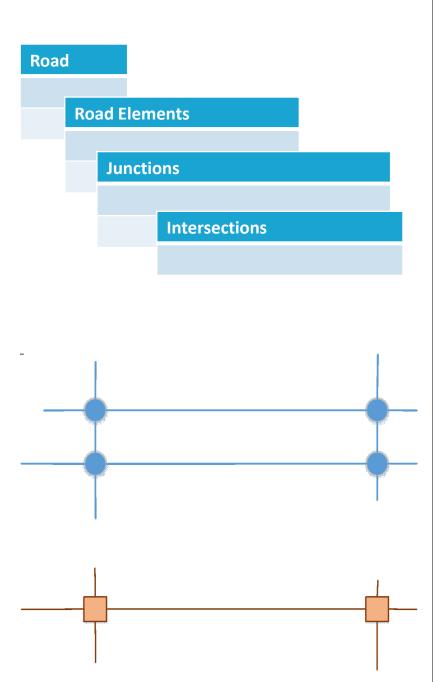
Kansas NG-911 Centerline Shape/Taper

 When the centerlines from a Dual Carriageway end to join a single centerline segment, a taper angle shall be used to connect the centerlines.

Single termination without ramp

Termination with ramp

Source¹: Kansas NG-911 GIS Data Model


OGC Topology: Geographic Data Format (GDF) Intersection and Junctions

Linear and Spatial Referencing


- LRS Route, Centerline (Datum), Route-Centerline (M:N)
- LRS Events
 - Junctions (Nodes): At Intersections, TAZ Centroid*, Bridge, Access Points, Median Cuts, Intersection Median Ends, Intersection Leg Begin/End, State/County/Town/Parish Boundaries (Snap Points)
 - » Intersection Point at Centroid, at a perpendicular offset from LRS Route (e.g.: Median Cut Intersection, MIRE-126)
 - » Road Segment: Junction to Junction
- Topological Segments
 - » Intersection Connectors
 - » Turn Segments/Lanes (HPMS 12, 13)
 - » Median Crossovers (MIRE-62)

Connectivity:

Road Segments and Intersection Parent-Child Data Relationship Junctions (Nodes) with Road Segments, Connectors, Turn Segments/Lanes, Median Crossovers, Reverse Route Segments, Inventory Routes, Continuity Intersection Points

Road Segment Use Case: Freight Origin-Destination Routing

Freight Route	Segment ID	Begin Junction ID	End Junction ID	Road Name	Speed Limit
100	73325903	69431853	69431880		65
100	358758343	69148880	69431863		70
100	73325904	69431863	69431865		65
100	73325905	69431865	69148897		60
100	73325905	69148897	69431891		70

타 鸿 🎟 🕂 🎼

01.1273

84.4273949°W 33.8415490°N 🐱

Selected Features: 5

MENT OUT_Pull11a - ToTerminal × III Counties121_127n

Calculate Selection: 🛱 Select By Attributes 🚭 Zoom To 📲 Switch 🔲 Clear 💭 Delete 🗐 Copy

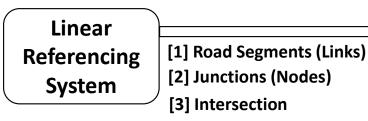
EdgeSequen	RoadNames	Origin_Des	NumberOfJo	Destinat_4	AvgDistanc
-1692820378713516190,6427226923243275847,7872297807254062231,	Eugene Talmadge Memorial Bridge, Atlantic Coastal Hig	South Carolina	374	b12	46.02858918582971
6428011016329063887,2709643821801372940		Fulton	135	b15	10.31696706028589
-3772566523323006118		Fulton	90	b15	12.63517712865134
3883060916671609923	Sullivan Road	Fulton	82	b15	5.724052206339342
2196668876445222640,-1163535265906310948,-1332252725276495092,	Perimeter	Fulton	78	b15	19.03045369794904
-2356212690051327139,1945594236381943576,8153266790188650595,	N Coastal Highway,North Coastal Highway,South Coast	South Carolina	52	b12	53.62336855189559
1879890688678032704,-4104625364390564628,-2816437862694231411,	Augusta Road, Bonnybridge Road, North Coastal Highwa	Effingham	37	b12	22.97700435052828
1879890688678032704,-4104625364390564628,-2816437862694231411,	Augusta Road, Grange Road	Effingham	36	b12	19.89434431323804
999452697798465524,-2352306268603014173,-2484389090956856686,	Perimeter,I 85	Cobb	28	b15	23.08887507768801

Illustration of TransCAD Network Link IDs, Topological and Flow Directionality

Classon Ave & Atlantic Ave

Node ID: 13744

Atlantic Ave (Raised median with curb)


- Two-way road, coded as one bidirectional link (Dir = 0)
- From ID and To ID represent topological direction.
- Number of lanes, link capacity, ect. are coded in the format AB_LANES, BA_LANES, AB_Capacity, BA_Capacity

Classon Ave (without median)

- One-way road, one link (Dir =1)
- From ID and To ID represent topological direction. If the direction of flow is the same with topological direction, then Dir =1, if the direction of flow is opposite to the topological direction, then Dir=-1.

[From ID]	[To ID]	ID D)ir	Length	LID991111 N	IAME1	COUNTY	FCLASS	DESIGN MI	EDIAN ACCE	SS SIGN		'EWAY TURN	I TOT_LANE
13619	13744	59119	0	0.17	59119 A	ATLANTIC AVE	4	14	0 A 0	N	Н	NS	NS	6
13744	13732	59124	1	0.07	59124 C	CLASSON AVE	4	16	0 N	N	н	NS	NS	2
13744	13873	59123	0	0.16	59123 A	ATLANTIC AVE	4	14	0 A 0	N	Н	NS	NS	6
13688	13744	59118	1	0.29	59118 C	CLASSON AVE	4	16	0 N	N	Н	NS	NS	-

Use Case: Travel Demand Modeling Links, Nodes & Roadway Characteristics

Travel Demand Modeling System

Link Attributes

ID

From Node ID

To Node ID

Direction

Length

Functional Class

Facility Type/Link Type

Area Type

Auto/Truck tolls

Number of Lanes

Parking Restriction

Truck/HOV Usage

Median

Access Control

Signal Density

Turn Lane

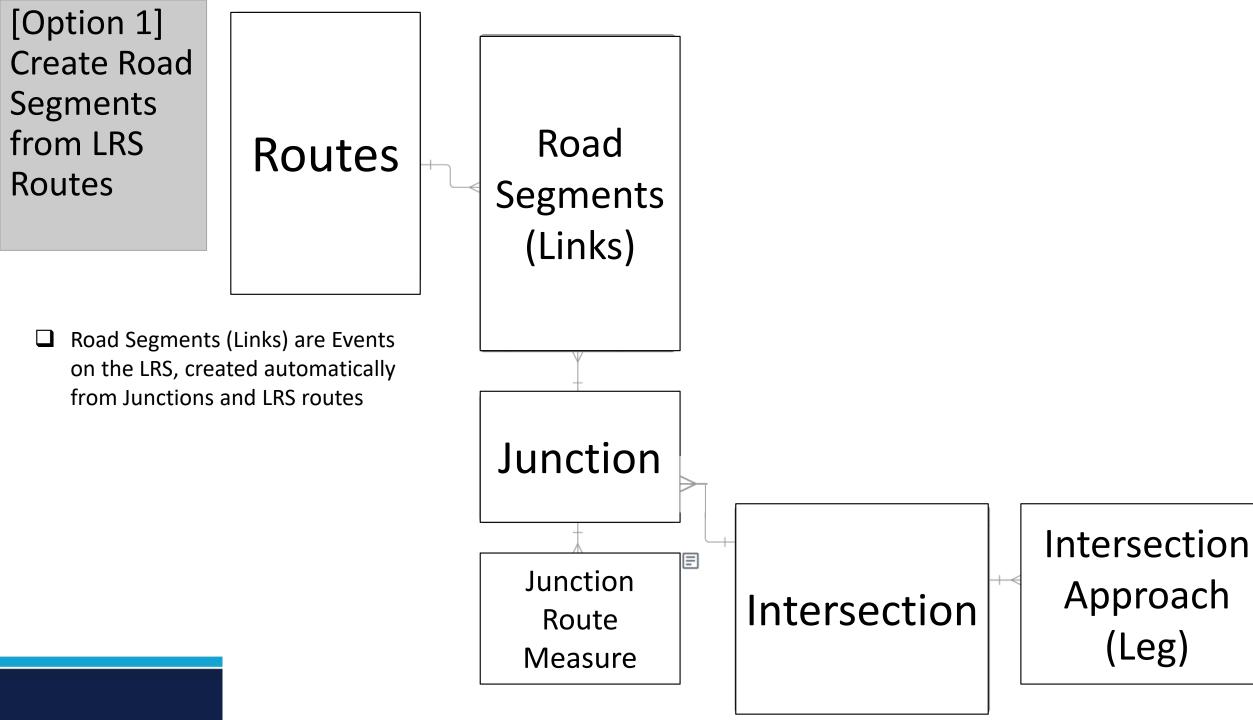
Ramp Type

Bridge, Tunnel,...

Software default fields

Important general classification, used to calculate link speed and capacity

Components of generalized cost used for model path-building

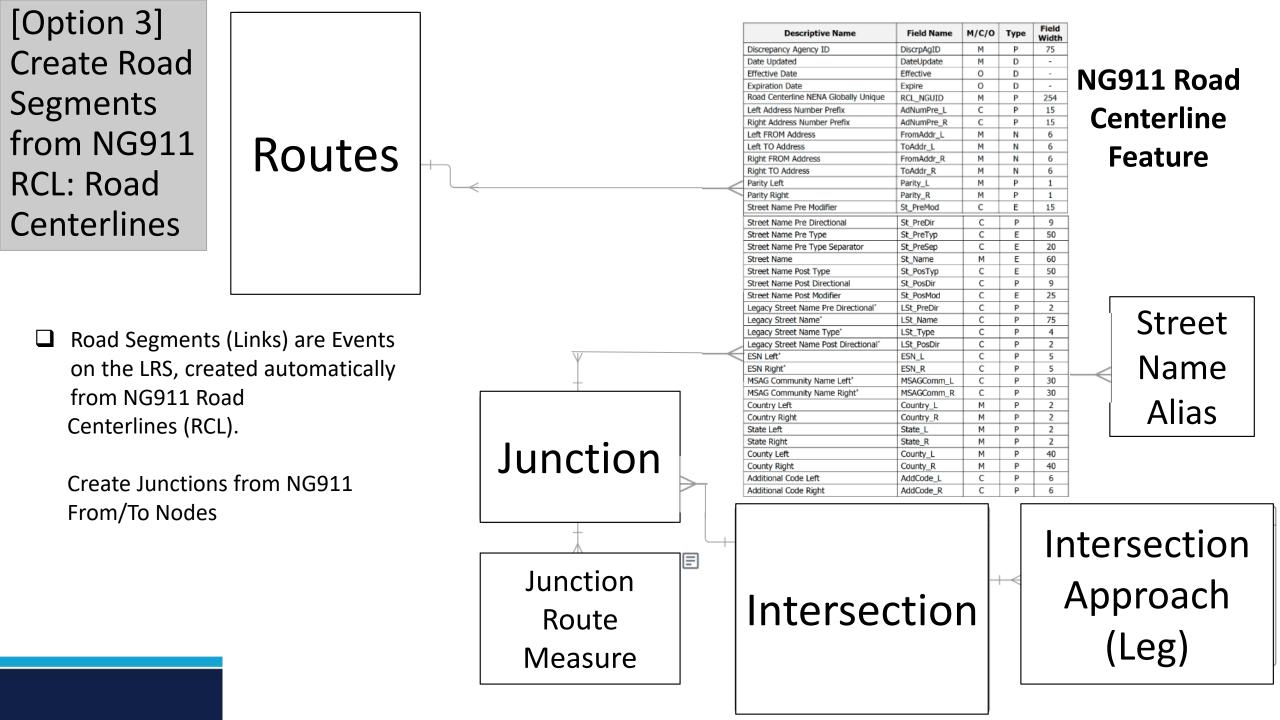

Time of day characteristics used to build period networks

Model specific attributes used to compute the appropriate physical link types together with attribute listed above

L	ink Attributes
R	oad Segment ID
В	egin Junction ID
E	nd Junction ID
D	virection
L	ength
Η	IPMS-01 - Functional Class
Η	IPMS-03 - Facility Type/Link Type
Η	IPMS-02 – Urban Code
A	uto/Truck tolls
Η	IPMS-07 – Through Lanes
Ρ	arking Restriction
Η	IPMS 08-11 – HOV/HOT/Toll
N	ſedian
A	ccess Control
S	ignal Density
Н	IPMS 12/13 – Turn Lane
R	amp Type
В	ridge, Tunnel,

MIRE Road Segments Attributes for Safety

13. Segment Length FDE 14. Route Signing 15. Route Signing Qualifier 16. Coinciding Route Indicator 17. Coinciding Route - Minor Route Information 18. Direction of Inventory FDE 19. Functional Class FDE 20. Rural/Urban Designation FDE 21. Federal Aid FDE 22. Route Type FDE 23. Access Control FDE 24. Surface Type FDE 25. Total Paved Surface Width 26. Surface Friction 27. Surface Friction Date 28. International Roughness Index (IRI) 29. International Roughness Index (IRI) Date 30. Pavement Condition (Present Serviceability Rating [PSR]) 31. Pavement Condition (PSR) Date 32. Number of Through Lanes FDE 33. Outside Through Lane Width 34. Inside Through Lane Width 35. Cross Slope 36. Auxiliary Lane Presence/Type 37. Auxiliary Lane Length 38. High-occupancy Vehicle (HOV) Lane Presence/Type



[Option 2] Create Road Segments from LRS Routes. Add NG911 RCL

Routes

- Road Segments (Links) are Events on the LRS, created automatically form Junctions
- NG911 RCL created as separate feature and associated with LRS/ARNOLD Routes since Geometry cannot be conflated

Field Field Name M/C/O Type Descriptive Name Width Discrepancy Agency ID DiscrpAgID М Ρ 75 Date Updated DateUpdate м D -Effective 0 D NG911 Road Effective Date 0 D Expiration Date Expire Road Centerline NENA Globally Unique RCL NGUID м Ρ 254 С Ρ 15 Centerline Left Address Number Prefix AdNumPre L 15 Right Address Number Prefix AdNumPre R С Ρ Road 6 Left FROM Address FromAddr_ М Ν Left TO Address ToAddr_L м Ν 6 Feature Right FROM Address FromAddr_R М Ν 6 Right TO Address ToAddr R М Ν 6 Parity Left Parity_L М Ρ 1 Segments м Ρ Parity Right Parity_R 1 С Е 15 Street Name Pre Modifier St_PreMod Ρ Street Name Pre Directiona St PreDir С 9 (Links) С Е 50 St PreTyp Street Name Pre Type 20 Street Name Pre Type Separator St PreSep С Е Е 60 Street Name St Name М С 50 Street Name Post Type St PosTvp E Street Name Post Directional St PosDir С Ρ 9 Street Name Post Modifier St PosMod С Е 25 Legacy Street Name Pre Directional LSt PreDir С Р 2 Street LSt Name С P 75 Legacy Street Name С Legacy Street Name Type* LSt_Type P 4 Legacy Street Name Post Directional* LSt_PosDir С Ρ 2 ESN Left' ESN_L С Ρ 5 Name ESN Right* ESN R С Ρ 5 MSAG Community Name Left* MSAGComm L С Ρ 30 MSAG Community Name Right MSAGComm_R С P 30 Alias Country Left Country L Μ Ρ 2 Country R М P 2 Country Right State Left State 1 М 2 P 2 М Ρ State Right State R Junction Ρ 40 County Left County L Μ County Right County R Μ P 40 Additional Code Left AddCode I С Ρ 6 Additional Code Right AddCode R С Ρ 6 Intersection E Junction Approach Intersection Route (Leg) Measure

Any County						Any Co Some	ounty City		NG911 RCL and						
			State Ro	ute 23						Street	Na	me A	lias		
Co	ounty R	oute 59		Vete	rans N	/lemo	rial Highw	ay							
•	Avenue of the Pines RCL1@AC911.tx.us RCL2@AC911.tx.us			Main Street RCL3@AC911.tx.us RCL4@AC9			Alias Stre Name NGUID		Road Centerline NGUID	Alias Stree t Name Pre Type	Alias Street Name Pre Type Separato r	Alias Street Name	Alias Street Name Post Type		
			a	.			7	AST1@AC911 s	1.tx.u	RCL1@AC911.tx.u s	State Route		23		
Road Centerline NGUID	Street Name Pre	Street Name Pre Directiona		Street Name	Street Name	t		AST2@AC911 s	1.tx.u	RCL2@AC911.tx.u s	State Route		23		
	Modifie	I	Туре	Pre Type Separato r		Nam e Post		AST3@AC911 s	1.tx.u	RCL3@AC911.tx.u s	State Route		23		
RCL1@AC911.tx.			Avenue	of the	Pines	Туре	ļ	AST4@AC911 s	1.tx.u	RCL4@AC911.tx.u s	State Route		23		
us RCL2@AC911.tx.			Avenue	of the	Pines		-	AST5@AC911 s	1.tx.u	RCL1@AC911.tx.u s	Count y Route		59		
us RCL3@AC911.tx. us					Main	Stree t	-	AST6@AC911 s	1.tx.u	RCL2@AC911.tx.u s	Count y Route		59		
RCL4@AC911.tx. us					Main	Stree t		AST7@AC911 s	1.tx.u	RCL3@AC911.tx.u s			Veterans Memoria I	Highwa y	
	Source: https://cdn.ymaws.com/www.nena.org/resource/resmgr/standards/nena- sta-006.1.1-2020 ng9-1pdf							AST8@AC911 s	1.tx.u	RCL4@AC911.tx.u s			Veterans Memoria I	Highwa y	

sta-006.1.1-2020_ng9-1-.pdf

Roads Modeling

HPMS 9 Road Identification Table similar to NG911 Road Centerline and Street Name Alias

Information about Road Name and Route Concurrencies

Complex Modifications

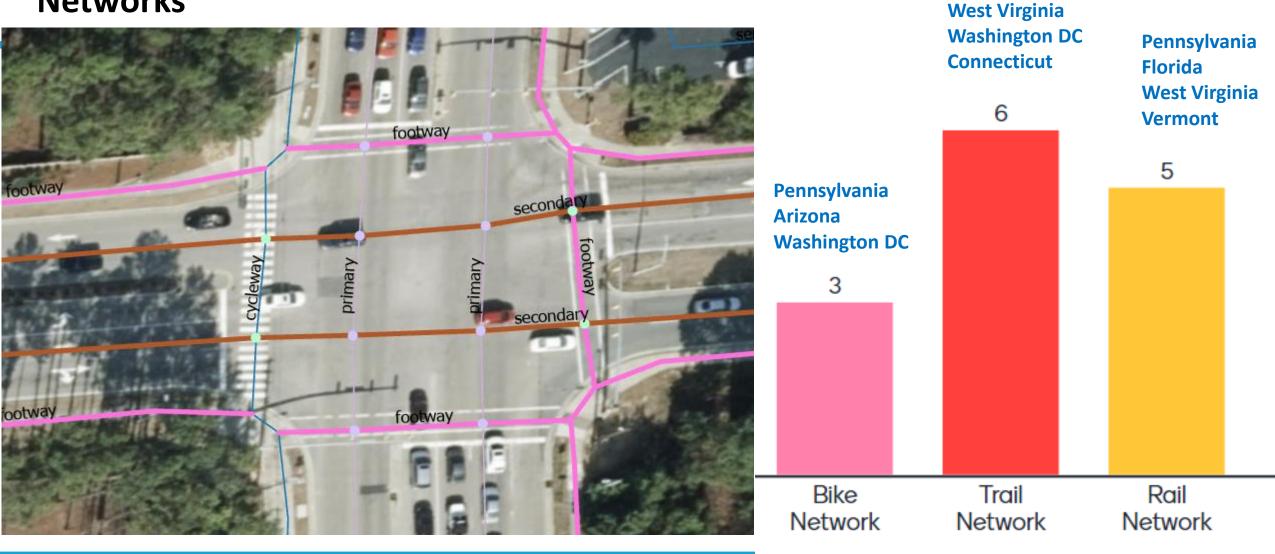
Route Identifications Table:

Route Number, Alt Route Name, Qualifier, and Signing are consolidated with a separate table structure. (2023)

Expanded to cover all public roads.

Field Name Data Type (characters)		Description	Valid Values		
BeginDate*	Date	Date at which the data becomes active.	MM/DD/YYYY		
StateID*	Numeric (2)	State FIPS code	Up to two digits for the FIPS code**		
RouteID*	VarChar (120)	Location reference ID for the linear feature	Up to 120 alpha-numeric digits that identify the route; this ID must be consistent with the Route ID in the State's LRS		
BeginPoint*	Decimal (8,3)	Beginning milepoint	Identifies the point of origin for a given segment, using a decimal value in thousandths of a mile		
EndPoint*	Decimal (8,3)	Ending milepoint	Identifies the terminus point for a given segment, using a decimal value in thousandths of a mile		
RouteNumber	Numeric	The appropriate route number	Code only the appropriate route number (leading zeroes shall not be used). For example, Interstate 35W shall be coded as 35.		
RouteName	Text	A familiar, non-numeric designation for a route			
IsPrimary	Numeric	Is this the highest order and lowest number route designation	Code 0 for no, or 1 for yes		
RouteQualifier Numeric The route signing descriptive qualifier.		See Look-Up Table below. Code the value which best represents the manner in which the roadway segment is signed on the route markers.			
RouteSigning	outeSigning Numeric The type of route signing		See Look-Up Table below. Code the value that best represents the manner in which the roadway segment is signed with route markers.		
Comments (Optional)	VarChar (100)	Comment for State use	Variable text up to 100 characters; this field is optional 12		

Complete Street Features

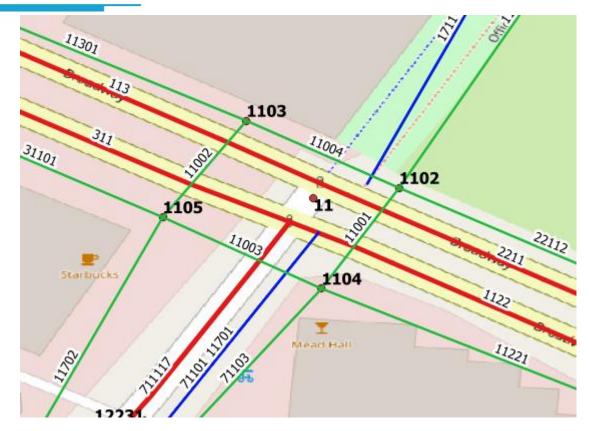

- Sidewalks
- Bike lanes (or wide paved shoulders)
- Special bus lanes
- Comfortable and accessible Public transportation stops
- Frequent and safe crossing opportunities
- Median islands
- Accessible pedestrian signals
- Curb extensions
- Narrower Travel Lanes
- Roundabouts

and more.

Complete Streets & Transportation Safety

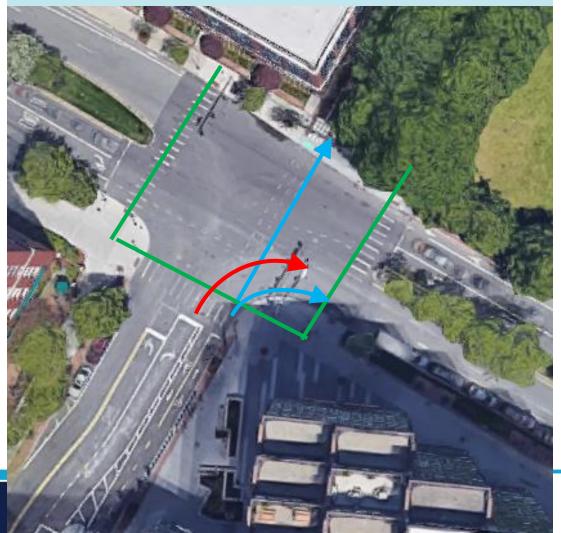
complete streets		tion Salety			
Georgia Tech UNIVERSITY of CALIFO CREATING THE NEXT	Research ORNIA PAVEMENT RESEARCH erkeley CENTER			Vision ra	ncorporate Complete Streets into asset nanagement systems to cost-effectively ake advantage of the societal, economic, nd environmental benefits of active ransportation
Concept Scope Management of assets for long-term performance of active transportation assets as part of a complete streets network C1. Technology Review for Inventorying Complete Streets Assets C2. Current Practices	R1. Inventorying Bike 2 d Pedestrian (and ADA) Facilities R2. Condition Evaluation Rating System of Bike and Ped Facilities R3. Long Term Performance and Forecasting for CS	R6. Network Level Measurement of Bike/Ped Counts R7. LCCA & Value of Complete Streets Improvements R8. Safety Impacts of Complete Streets Implementation	D1. Gu Comple Perfo Measure and Pri D2. D Guid Comple As	opment idance for ete Streets ormance es, Targets, oritization Database ance for ete Streets ssets Interface for	Inplementation I1. Best Practices for Organizational Structures to Support CS I2. Best Practices to Encourage Interagency Collaboration for CS I3. Training for Complete Streets Condition Evaluation
and Needs Review for Complete Streets C3. County/City Review of Practices and Needs	Assets R4. AV/CV for CS data collection R5. Crowdsourcing for CS data collection	R9. Pilot Testing/ Feasibility of Technologies for Inventorying Complete Streets Assets	and Pre D4. Opti Collectic for Inv	ut, Analysis, esentation mized Data on Methods entorying ete Streets	and Prioritization I4. National Standards for Complete Streets Targets and Data Collection Current Project

States with Routes for Bike, Ped/Trail, Rail Networks

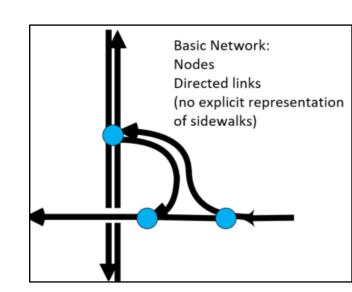

Number of Responses: 9

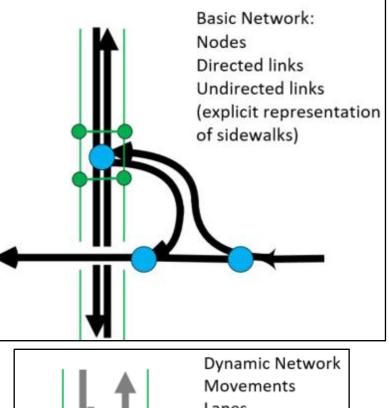
Pennsylvania

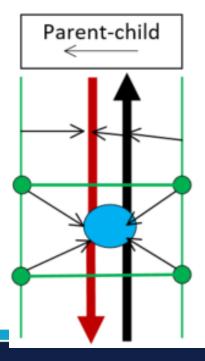
Florida


Generalized Modeling Network Specification (GMNS)

Modeling Multimodal, MIRE-Compliant Signalized Intersection from ARNOLD and NG911 Roads

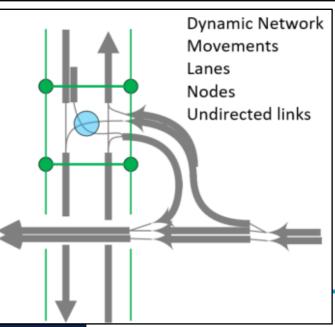

Red: Vehicle links and movements Blue: Cycle track links and movements Green: Pedestrian links and crosswalks

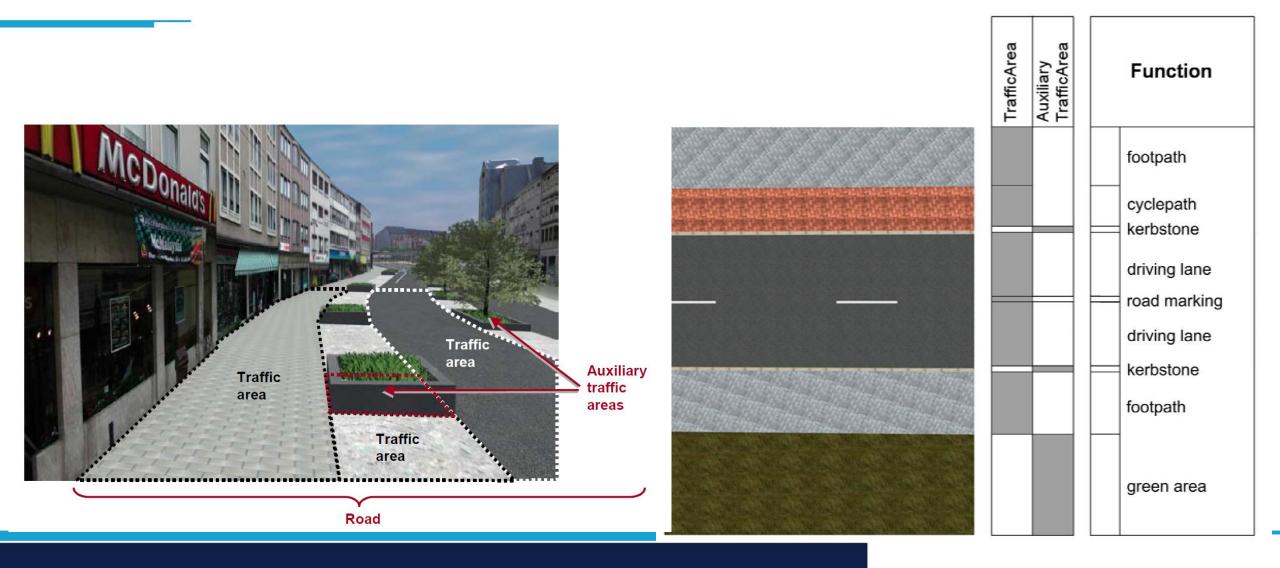

Selected Movements from Ames St.



AEGIST Data Model with GMNS Multiresolution Representation

- Link level
- Lane level

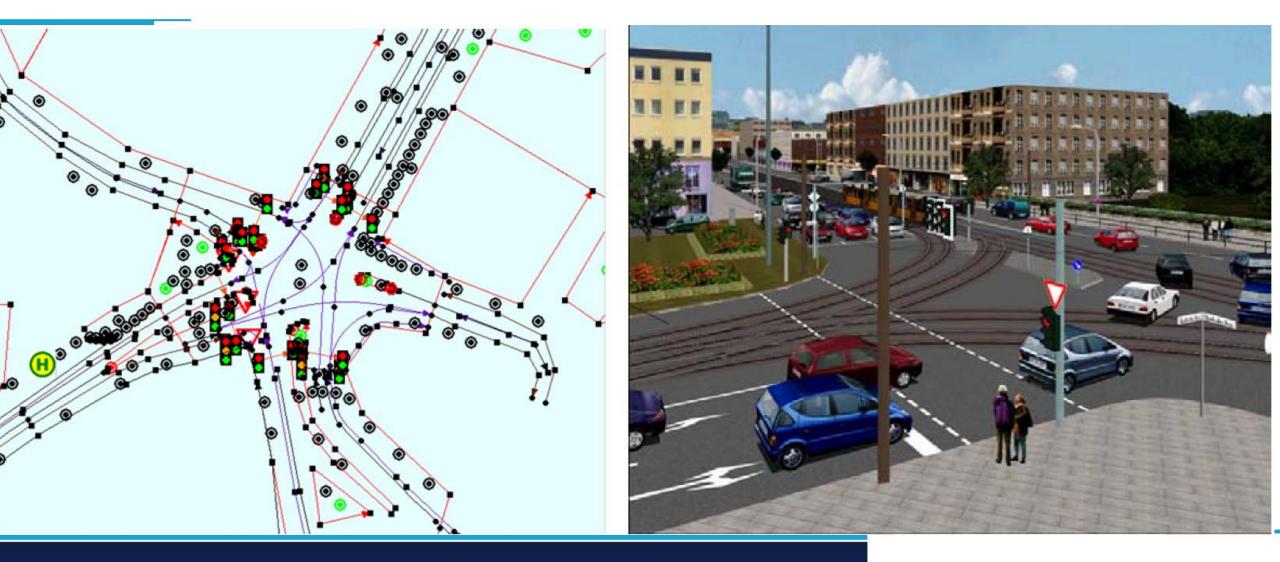



Links may have parent links - Sidewalks to adjacent roads - One side of a road to the other (consider the case where the only link with shapepoints is the red link)

Nodes may have parent nodes -Associate crosswalk entrances with signals

Situation	LODO	1		LOD 1	LOD 2 - 4
Level-of-Detail (LOD) (Geometry) Source: CityGML	TransportationComplex provides linear network with line objects		prov deso shap []] 1 (isportationComplex rides surface geometry cribing the actual be of the object TransportationComplex Surface geometry) Terrain surface	Surface geometry is devided thematically into TrafficAreas, like: Traffic – cars Traffic – emergency lane Traffic – restricted area Auxiliary - grass
Use Case		Project Plann	ing	Project Delivery	Operations & Maintenance
Project Information Modeling in FMIS & DOT PPMS	S	LOD 0, LOD 1		LOD 0, LOD 1	
Complete Streets for Highway Safety Analysis		LOD-0, 1, 2-4			LOD 0, LOD 1, LOD 2-4
Asset Inventory & Performance, ARNOLD Reportin	g				LOD 0
Travel Demand Modeling, Freight OD-Routes Analy				LOD 0	
Traffic Design Model Simulation			LOD 2-4		
Roadway Geometry (Alignment, Pavement Cross-s	ection, Profile)			LOD 1, LOD 2-4	
Point Cloud Classification and Asset Data Extraction	n from Lidar				LOD 2-4

CityGML Road Network Model Elements

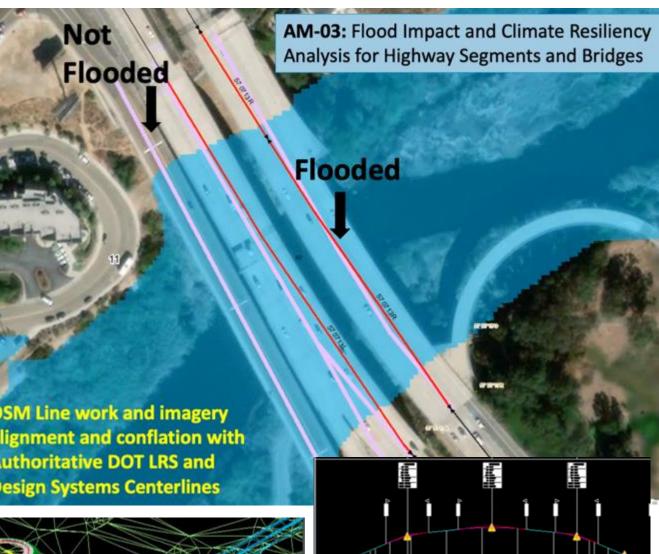

23:CAR_COLLISION

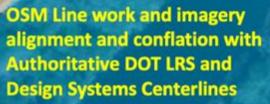
Detecting Pedestrian and Vehicle Conflicts, Crashes in an Intersection

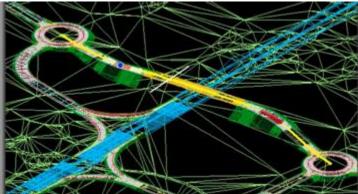
	Median		Medi	101c		102 ft turn bay	103 Median crossov	er, left turn bay	1			ssir	ional left turn Tv ig traffic from	.07	vica ray left	Access Point 108 turn lane
INT ID				Ξ-	Geometry Type (MIRE-126)				Traffic Control TypeSignalization Presence(MIRE-121)Type (MIRE-122)				of Legs RE-125)	Geometry (XYZm)		
1	Median Cut	Int 1	1 - Ro	oadway/Roadw	ay	7- Non-Conventional Intersection - Median U-Turn			n	1 - Uno	1 - Uncontrolled 5 - Unsignalized		0		X ₁ ,Y ₁ ,Z ₁ ,m ₁	
2	Median Cut	Int 2	1 - Ro	oadway/Roadw	ay	7 - Non-Conver	ntional Intersecti	on - Median U-Tur	'n	1 - Uno	controlled	5	Unsignalized	0		X ₂ ,Y ₂ ,Z ₂ ,m ₂
3	Median Cut	Int 3	1 - Ro	oadway/Roadw	ay	7 - Non-Conver	ntional Intersecti	on - Median U-Tur	'n	1 - Uno	controlled	5	Unsignalized	0		X ₃ ,Y ₃ ,Z ₃ ,m ₃
4	Median Cut	Int 4	1 - Ro	oadway/Roadw	ay	7 - Non-Conver	ntional Intersecti	on - Median U-Tur	'n	1 - Uno	controlled	5	Unsignalized	0		X ₄ ,Y ₄ ,Z ₄ ,m ₄
Junc.10	D INT ID	Geor	_	Median Crossover ID	Medi Cross	ian sover Name	Begin Junction ID	End Junction ID	Ro	ute ID	Begin, End Measure		Median Crossover Type (MIRE-62)	1	••••	Geometry
102	1	X2,Y2	,Z ₂	1	MC 1		101	102					No Left Turn Bay			[X ₁ ,Y ₁ ,Z ₁]
103	2	X ₃ ,Y ₃	, Z 3	2	MC 2		103	104					Left Turn Bay			[X ₂ ,Y ₂ ,Z ₂]
104	2	X4,Y4	,Z4	3 MC 3			105	106					Directional Left Turn Bay			[X ₃ ,Y ₃ ,Z ₃]
105	3	X ₃ ,Y ₃		4	MC 4		107	108					Two-way left Turn La	ne		[X ₄ ,Y ₄ ,Z ₄]
106 107 108	3 4 5	X ₄ ,Y ₄ X ₃ ,Y ₃ X ₄ ,Y ₄	, Z ₃		tersect OGC G	ion DF; #MIRE)	Junctions (#OGC GDF)	Crosso		+			egment /ent)			

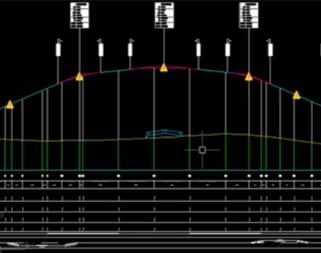
	9] I Turr	Modeling Is	-7385323853-5011	Mic	higar	י Tra	vel D	ema	and	Model	ing Ne	tworl	k (Emn	ne)	
			2011 - 1105			[Nodes: /	A Node	does n	ot have to	be at an Int	ersection	n, e.g.: CT T	ie Points	
		5011-21780	5016-50	5014-501	1		⊿ FID	Shape	ID	Х	Y	DATA1	DATA2 DAT	A3 ISZONE	ISINTERSEC
	21780	5014	ශි 4-21780			5014 015	1971	Point	5011	302824.18757	1750232.1251	0	0	0 0	1
			-5016	-15		015	1972	Point	5012	303237.28123	1713073.9999	0	0	0 0	0
		21779-5016	2011	5016-5015			1973	Point	5013	302948.28115	1713000.625	0	0	0 0	0
		501	6.0				1974	Point	5014	303619.90612	1752033.0001	0	0	0 0	0
			5-1938				1975 1976	Point Point	5015 5016	303722.56241 304274.68762	1751880.125 1750151.9999	0	0	0 0	0
			5016				1977	Point	5017	308747.37487	1833742.375	0	0	0 0	1
			-5016				1978	Point		310742.31248	1834809.9999		0	0 0	0
-	Furns	5	19387			ł					1		1	1	
⊿	OID	ID	JNODE	INODE	KNODE	TPF	DATA1	DATA2	DATA	3 @avaut	@avbqt	@avh2t	@avh3t	@avhqt	@avlqt
)	5014-5011-5016	5011	5014	5016	-1	0	0		0 33.200001	9.200001	1.43534	0.302932	133.20001	3
	1	5014-5011-21780	5011	5014	21780	0	0	0		0 0	0	C) 0	0	0
1	2	5014-5011-23853	5011	5014	23853	-1	0	0		0 95.089836	42.199997	16.715115	4.339508	3313.8748	14.8
3	3	5016-5011-5016	5011	5016	5016	0	0	0		0 0	0	C) 0	0	0
4	4	5016-5011-21780	5011	5016	21780	-1	0	0		0 2.4	0	0.032135	0.007318	1.6	0
1	5	5016-5011-23853	5011	5016	23853	-1	0	0		0 310.98734	195.79999	44.966614	12.196842	7051.7607	44.600002
	5	23853-5011-5016	5011	23853	5016	-1	0	0		0 135.8	34.400002	7.572992	1.774333	2145.1406	9.6
	7	23853-5011-21780	5011	23853	21780	-1	0	0		0 610.44226	308.18484	86.436714	23.787447	10592.301	37.374294

Complex Urban Intersection Modeling, Complete Streets Source: CityGML

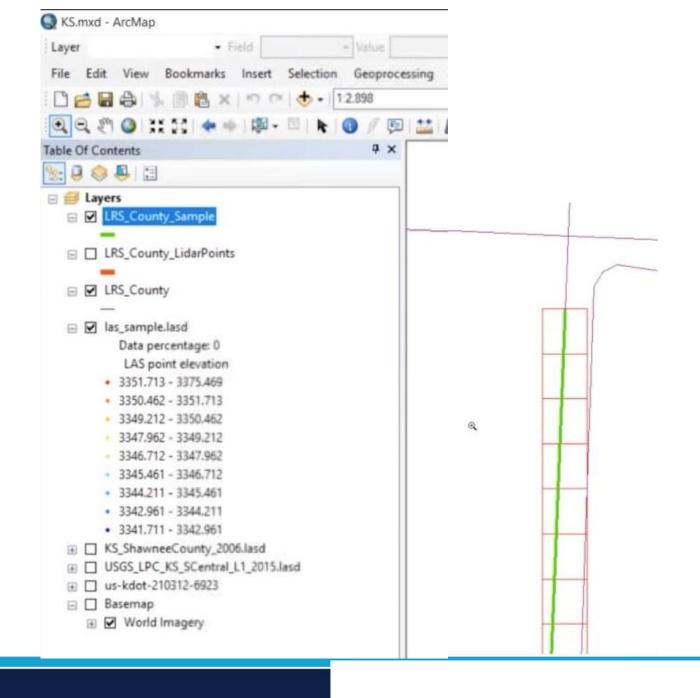

Routes Model

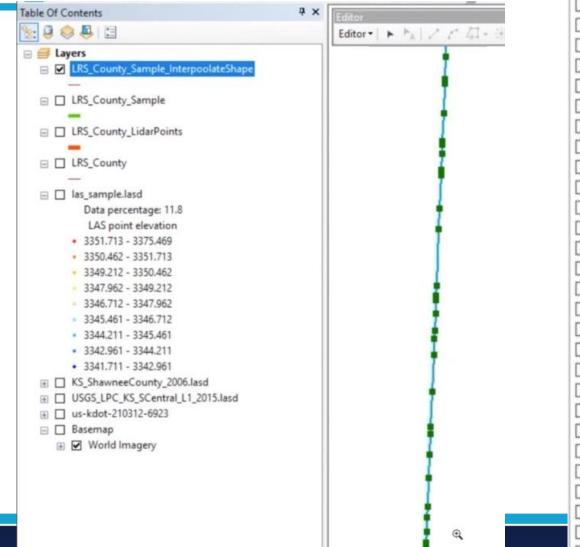

Publish Routes with Z-Values


Business Use Cases


- Calibrating Measure values for Routes 1)
- 2) Distinguishing at-grade intersections vs. Under/Overpasses for Routing, Analysis
 - a) Freight Routing based on vertical clearance, bridges
 - b) Oversized/Overweight Vehicle Routing
- 3) Geometric Safety Analysis (Curve, Grade)
 - a) Vertical Curves for Safety
 - Spatial Econometric Models for Safety b) Performance Functions
- Asset Management: Risk & Resiliency Analysis 4)
 - Flood Impact Analysis a)
 - **Rockfall Analysis** b)
 - Snow Removal (Identifying Steep Hills) C)
 - **Estimating Resurfacing Volumes** d)
 - Slope & Superelevation Calculations e)
 - Vertical Bridge Clearance

Other? 5)





Develop and publish 3D Roads Data Model

Reader									
Format:	ASPRS Lidar Data Exchange Format (LAS)								
Dataset:	az\las_processor_bundled_out\filtered_2021_5444.laz								
Parame	ters	Coord. System:	Read from source						
 Merge Separation 	e source d rate destin	aset Options atasets to one desti- ation for each source ation for each source	e file						
 Merge Separation 	e source d rate destin	atasets to one destination for each source	e file						
 Merge Separ Separ 	e source d rate destin rate destin	atasets to one destination for each source	e file ælælder						
 Merge Separ Separ Writer Format: 	e source d rate destin rate destin	atasets to one destination for each source ation for each source ation for each source idar Data Exchange	e file ælælder						
 Merge Separ Separ Writer Format: 	e source d rate destin rate destin ASPRS L ansas\us-	atasets to one destination for each source ation for each source ation for each source idar Data Exchange	re file De Golder Format (LAS)						

Develop and publish 3D Roads Data Model

· · · ·	M Finish Sketch		
=	х	Y	Z
19386	294826.620	593695.224	3349.18
19387	294826.623	593695.322	3349.14
19388	294826.625	593695.362	3349.14
19389	294826.627	593695.418	3349.14
19390	294826.628	593695.440	3349.15
19391	294826.628	593695.464	3349.14
19392	294826.632	593695.569	3349.13
19393	294826.637	593695.707	3349.13
19394	294826.638	593695.730	3349.15
19395	294826.640	593695.776	3349.15
19396	294826.641	593695.812	3349.14
19397	294826.643	593695.898	3349.17
19398	294826.645	593695.931	3349.16
19399	294826.647	593695.998	3349.14
19400	294826.649	593696.067	3349.14
19401	294826.652	593696.133	3349.15
19402	294826.653	593696.171	3349.19
19403	294826.655	593696.211	3349.2
19404	294826.658	593696.296	3349.10
19405	294826.661	593696.381	3349.10
19406	294826.661	593696.393	3349.16
19407	294826.662	593696.420	3349.10
19408	294826.663	593696.475	3349.15
19409	294826.665	593696.525	3349.1
19410	294826.667	593696.577	3349.1
19411	294826.669	593696.622	3349.1
19412	294826.670	593696.663	3349.1
19413	294826.674	593696.760	3349.1
19414	294826.674	593696.774	3349.1
19415	294826.675	593696.798	3349.1
19416	294826.678	593696.894	3349.1
6			

LRS Centerline Management & Governance

Administration Level 1: Multiple Centerline Geometries

- » DOTs manage all DOT Roads. Local roads managed by DOTs and/or Local agencies, who provide data to DOTs for updating All Roads dataset
- » Multiple Road Centerline geometry sources used to add data to DOT LRS. These sources include: DOT CAD/BIM, NG911, HERE, INRIX XD Segments, Traffic Message Channel (TMC) Sections, Open Street Maps (OSM) Ways
- » Different geometries allowed to co-exist (for the same road). Each geometry is managed by individual agencies. They are used by agencies for supporting mutually exclusive business processes.

Administration Level 2: Integrated Centerline Geometries Based on Ownership

- » DOT manages DOT Roads only. Established rules for integrating data from local agencies and/or NG911 into DOT LRS.
- » DOT integrates roads data from local agencies using edge matching and administrative boundary points
- » Roadway alignment data integrated automatically from DOT Design System to create new centerlines and/or process realignments

Administration Level 3: Conflated Centerline Geometries

- » Road Centerlines from Public and Private sector agencies are conflated using a set of centerline conflation rules. Goal is to create one road centerline for referencing transportation data & modeling 1.5D/2D/3D Geometry Roads
- » Changes are detected automatically and change proposals created to reconcile differences in centerline across agencies
- » Road data conflated from external community and/or proprietary roads data sources (e.g.: OSM, HERE, INRIX, Geotab) to support business

LRS Centerline Data Integration from Authoritative Sources

Administration Level 1: Multiple Road Centerlines co-exist. At best, locals provide PDF/Paper maps to DOT, who digitizes manually

• Administration Level 2: Integration of roads data from DOT CAD. NG911/Local roads appended. Automated processes for Data Integration

• Administration Level 3: Conflation of roads data from received from NG911/Local agencies and/or proprietary, community data sources

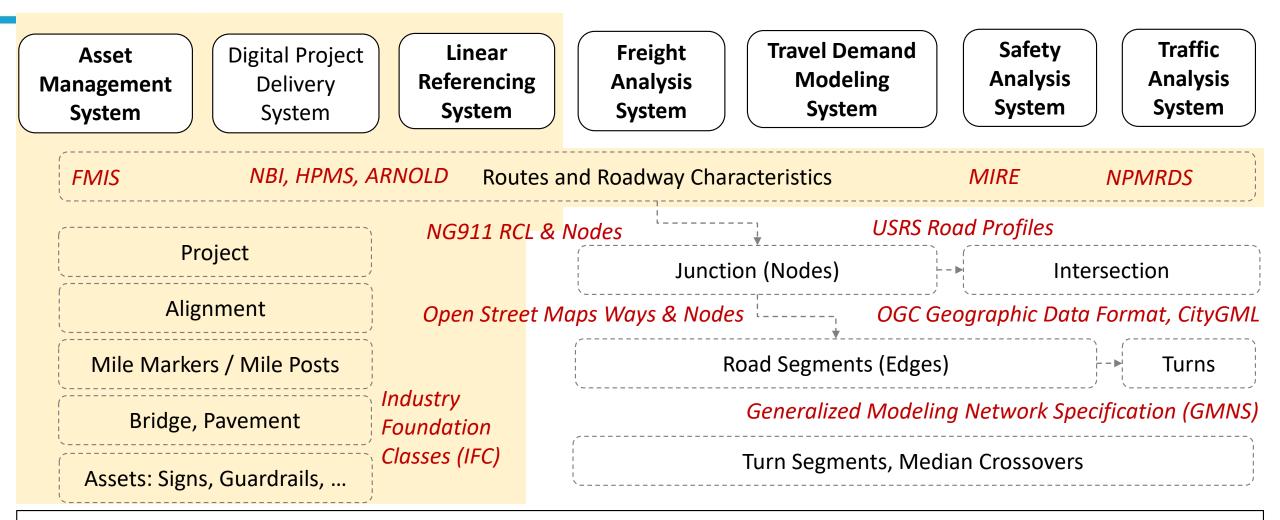
		Administra	ation Level 1	Adminis	stration Level 2	Administration Level 3		
**Data S	Sharing Agreement State	DOT Manages All Roads, No Locals Coordination	Local Roads Data Imported and Digitized from PDF/Paper	Importing Roadway Alignment from Design using Automated Tool	Local/NG911 Roads Data Authoritative & Appended to DOT Roads	DOT Conflating Local/NG911 Centerlines Geometry	DOT Conflating Proprietary, Community Roads	
1	Arizona				Local to DOT, Append given owner			
2	Caltrans	DOT, No Locals Coordination						
3	Connecticut		Local, Digitize PDF/Paper					
4	Colorado							
5	Florida	DOT, No Locals Coordination						
6	Georgia					Local, Conflate GIS Files?		
7	Idaho		Local, Digitize PDF/Paper					
8	New Mexico				Local to DOT, Append given owner	Local, Conflate GIS Files		
9	North Carolina					Local, Conflate GIS Files		
10	North Dakota	DOT, No Locals Coordination	Local, Digitize PDF/Paper					
11	Ohio**		Local, Digitize PDF/Paper*		Local to DOT, Append given owner*	Local, Conflate GIS Files		
12	Oklahoma		Local, Digitize PDF/Paper					
13	Pennsylvania	DOT, No Locals Coordination						
14	Tennessee	DOT, No Locals Coordination						
15	Texas**					Local, Conflate GIS Files		
16	Vermont				Local to DOT, Append given owner			
17	Washington**		Local, Digitize PDF/Paper			Local, Conflate GIS Files		
18	Washington DC							
19	West Virginia	DOT, No Locals Coordination	DOT/Local?, Digitize PDF/Paper					

Mentimeter

Breakout Session 1: Open Discussion & Survey

Discuss modeling approach and use cases for:

- Road Segments and Road Names:
 - Option 1: Create Road Segments from LRS Routes
 - Option 2: Mange both NG911 RCL and Road Segments created from LRS Routes.
 - Option 3: Integrate NG911 RCL and Street Name Alias Table with ARNOLD Routes. Conflate NG911 RCL Geometry with DOT LRS Geometry
- Use cases for Integrating Roads from other sources: NG911, Open Street Maps, HERE, INRIX etc.
 - Freight Routing Analysis
 - Travel Demand Modeling
 - Safety Analysis (including Pedestrian, Bike, Safety)
 - MIRE Reporting
- Intersection Leg: Where to begin and end?:
 - Begin where crosswalk intersects route
 - Begin where stop bar intersects route
 - Begin where median end intersects route
 - Other?
- Turns should be modeled: Using Links, Nodes

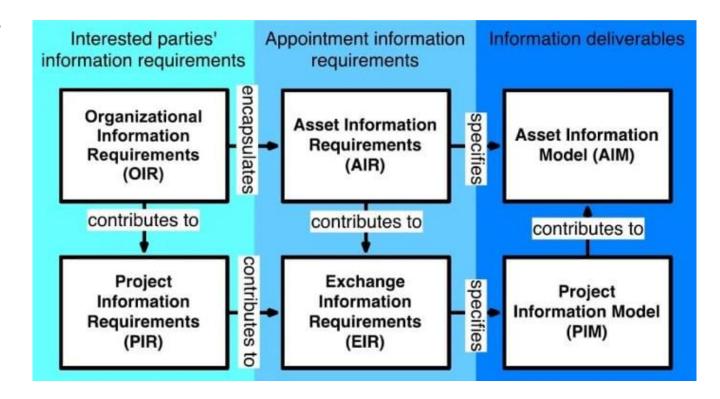

Topic 2: Design/CAD Data Integration

National BIM-GIS Integration: Design/CAD to GIS Asset Information Model

Integrating Data from following Design/CAD
 Existing Practices, Tools & Techniques

- Pennsylvania Turnpike Commission
- Connecticut DOT
- Utah DOT
- Envisioned IFC Based Process

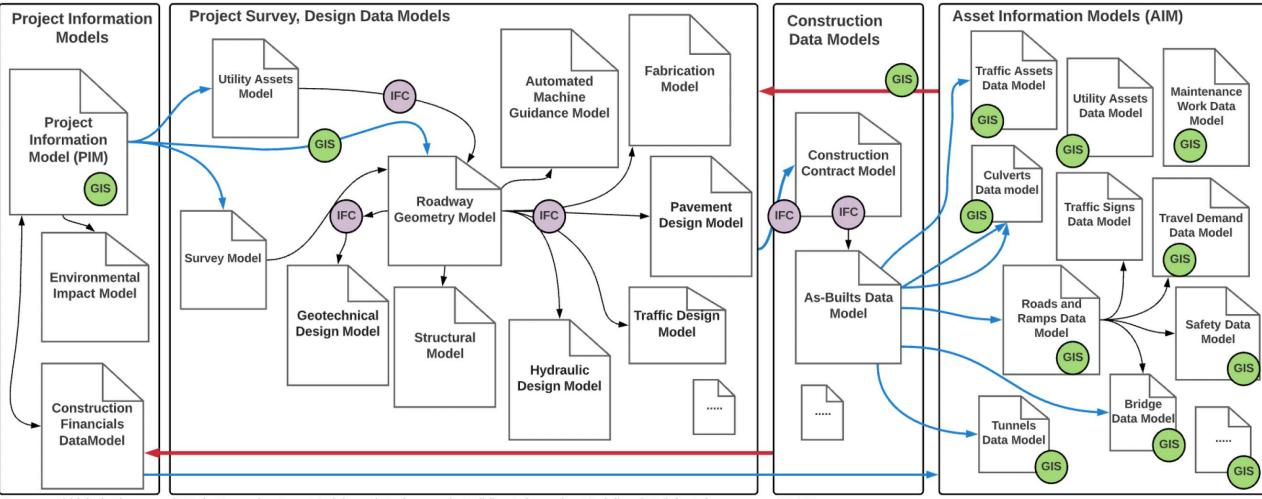
Topic 2 Objective: Road Network Data Model Development for Enterprise Use Integrating Asset, Roadway and Project Data from Digital Project Delivery Systems into



Private Sector Data Vendors – Asset Data (including Roads), Traffic Data, Safety Data, Traveler Data, Lidar Data, Imagery Data

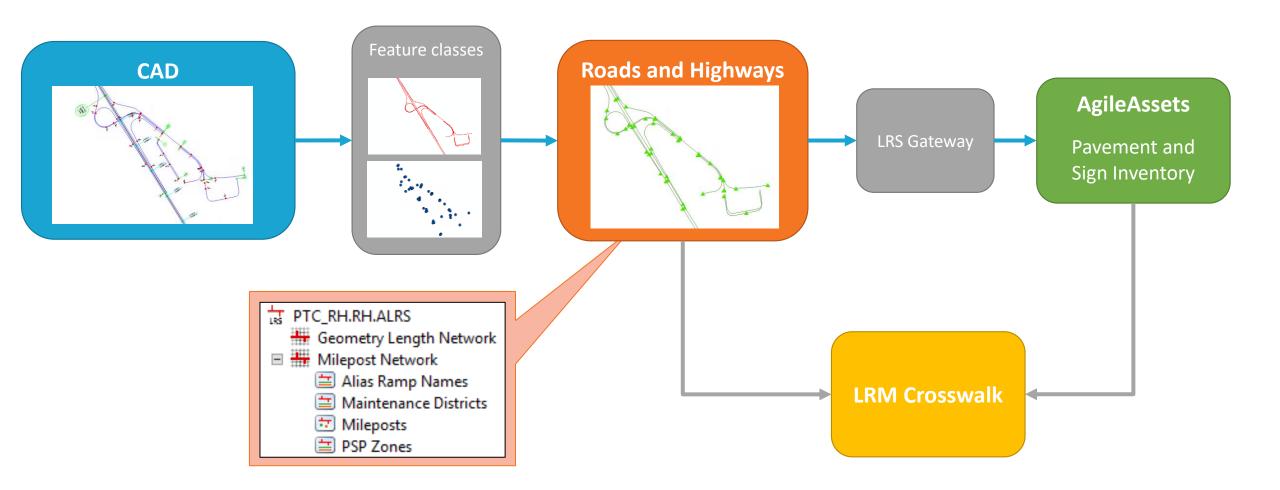
National and International Data Standard Development Organizations – ISO, OGC, W3C, AASHTO, FHWA, buildingSMART, etc.

Why Design to GIS/AM Data Exchange?


- Road Network Data Stewards need to specify "Asset Information Requirements" for Digital Project delivery Teams (#ISO-19650)
- Most State DOTs working on Digital Delivery Roadmaps for Building Information Modeling. GIS-LRS Personnel will be requested for AIRs.
- Design-Construction Systems now allow for Road Network Data Modeling similar to how Roads Data Model is Setup in GIS-LRS Systems

Road Network Data Modeling at Enterprise Level

Machine Readable Data Models Based on Open Standards

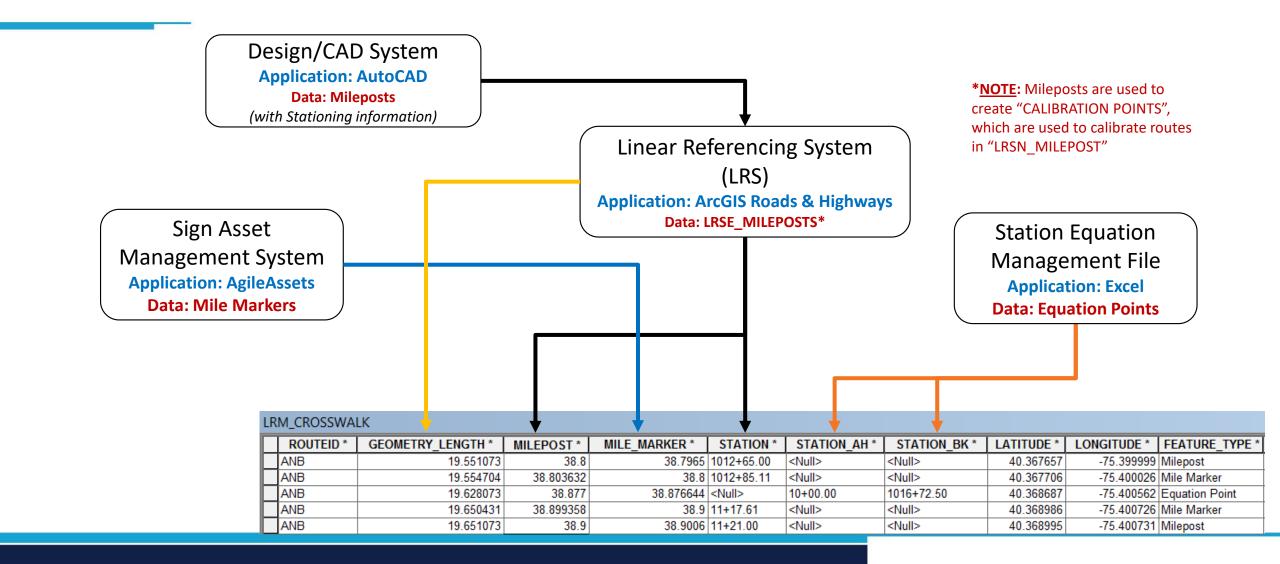

Digital As-Builts Handoff to Asset Management – Data Life Cycle for Roads & Asset Data

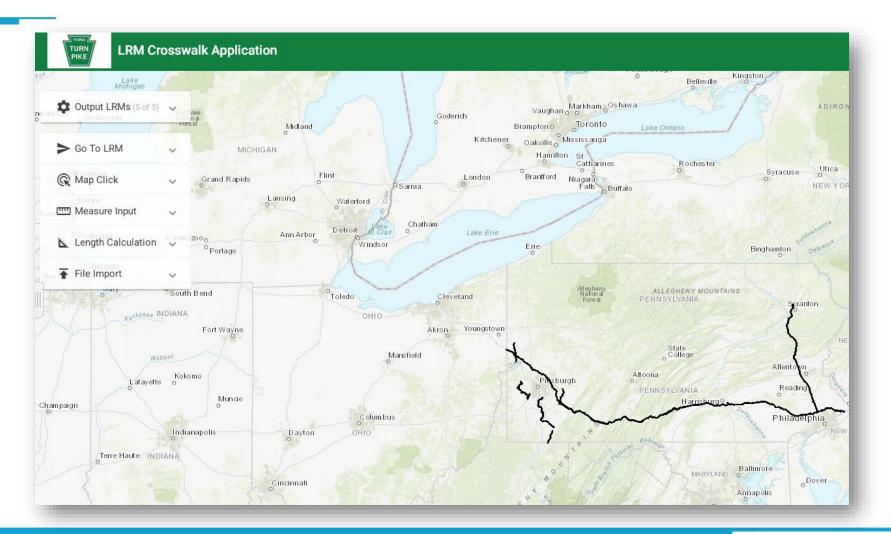
Source: Abhishek Bhargava (2021). Governing Data Models and Exchanges in Building Information Modeling (BIM) for Infrastructure. IHEEP.

Pennsylvania Turnpike Commission: Design/CAD to GIS

Route centerlines, mileposts, and stationing

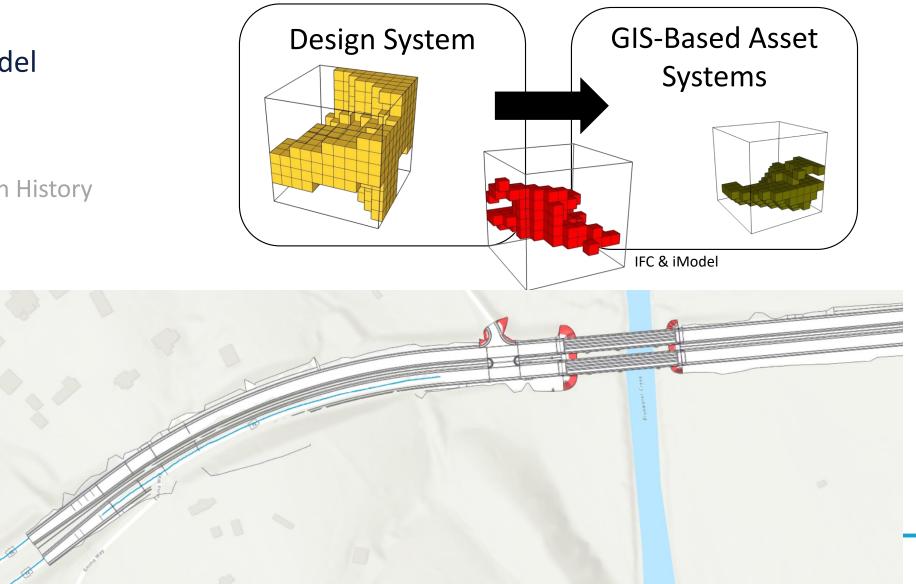
PTC: Design/CAD


Route centerlines, mileposts, and stationing

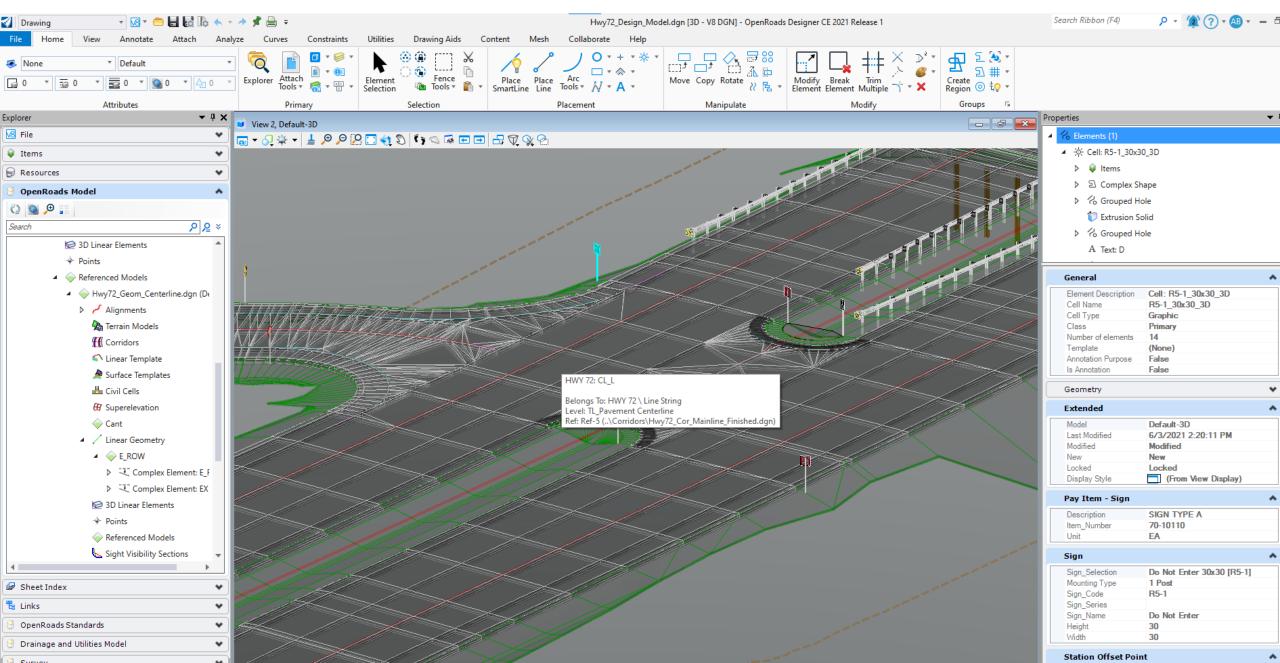

PTC: Milepost LRM Events and Use Cases

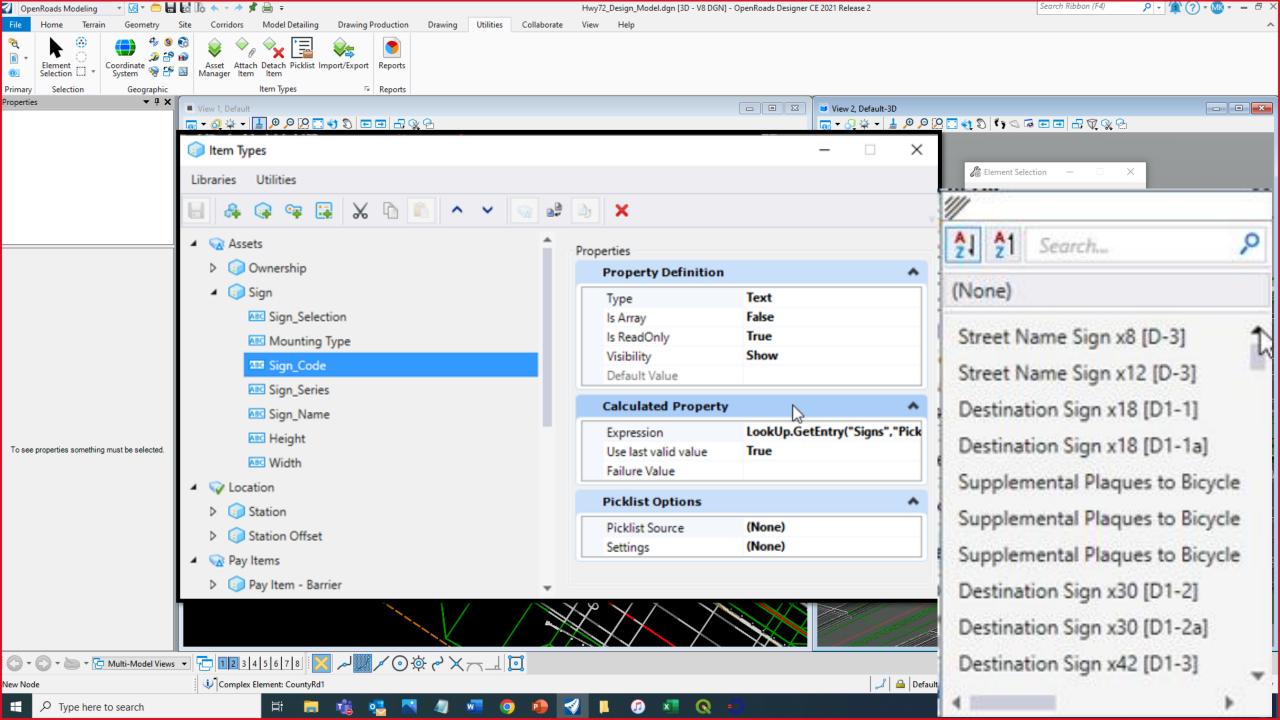
PTC LRM Crosswalk

PTC LRM Crosswalk Application Screens



LRM to LRM Transformation: Where am I? Thursday 3:30-4pm Ballroom C1

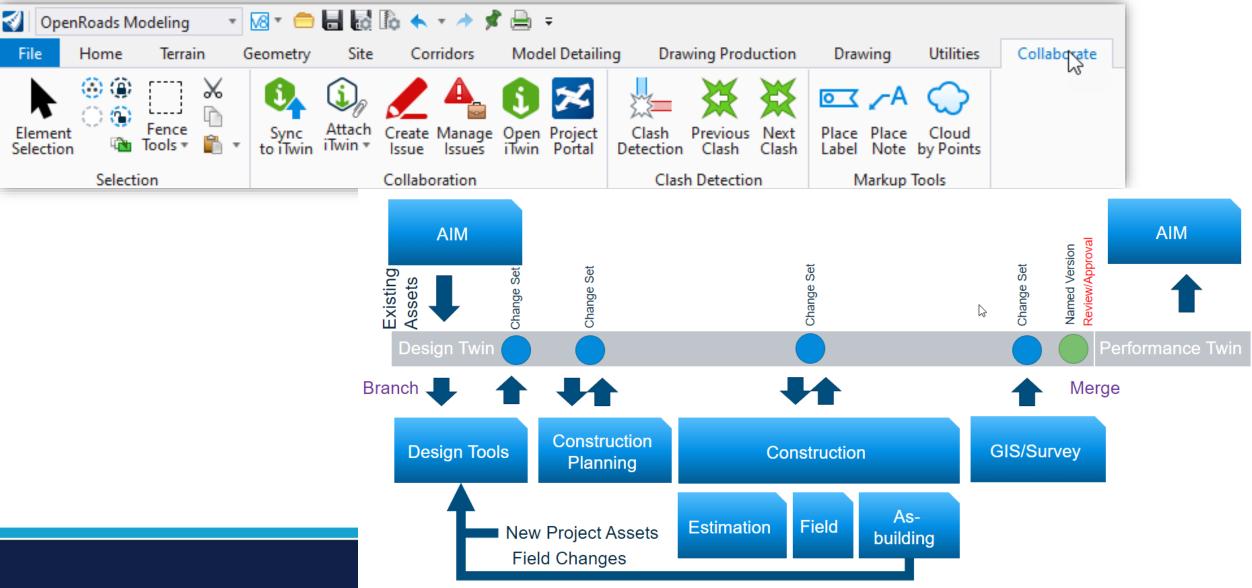

Road Network Data Modeling using data from Design-Construction


Asset Information Model

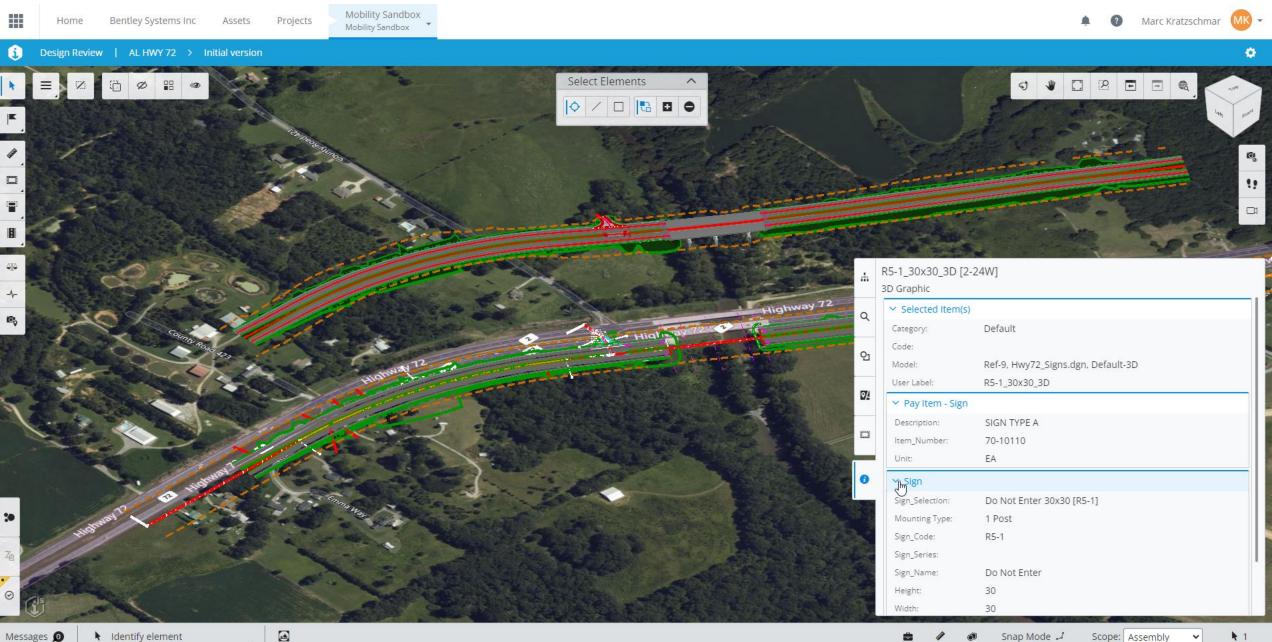
- » Road Centerlines
- » Stations
- » Pavement Construction History
- » Assets
 - Signs
 - Guardrails
 - Bridge

Open Design File and Inspect Model Elements, Item Types

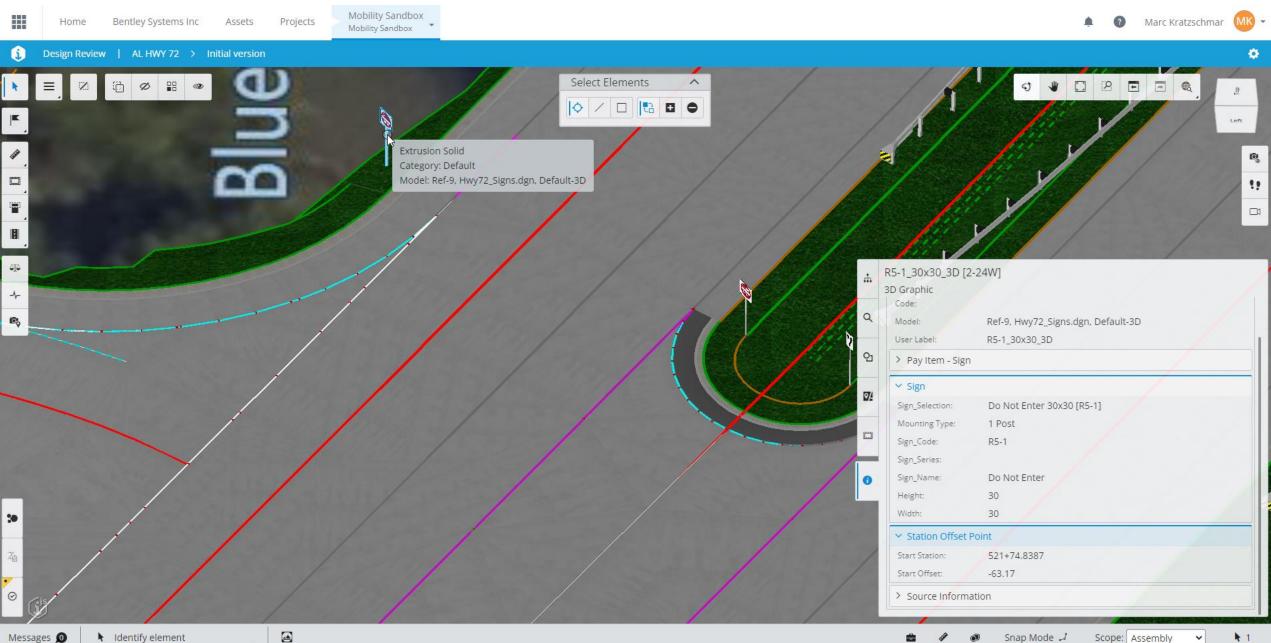
Roads Data Model in Design, with Roadway Characteristics

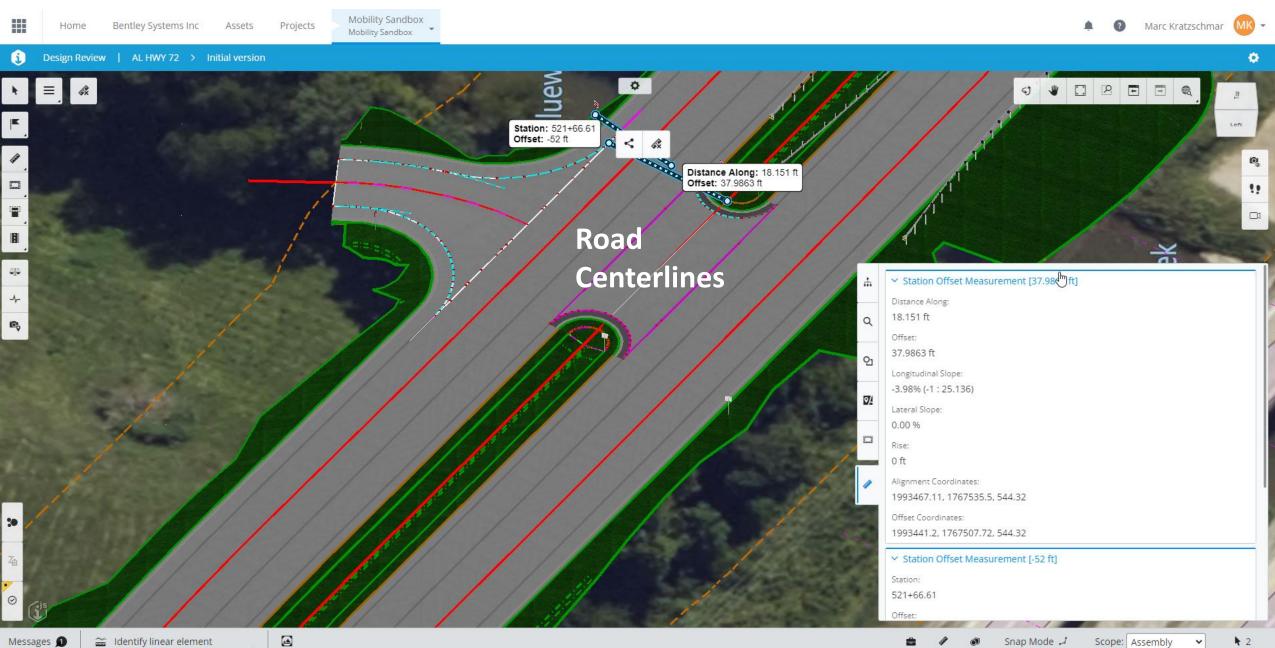

Current Active 3D Linear Element: HWY 72 By Profile Name : Hwy 72 WB PGL

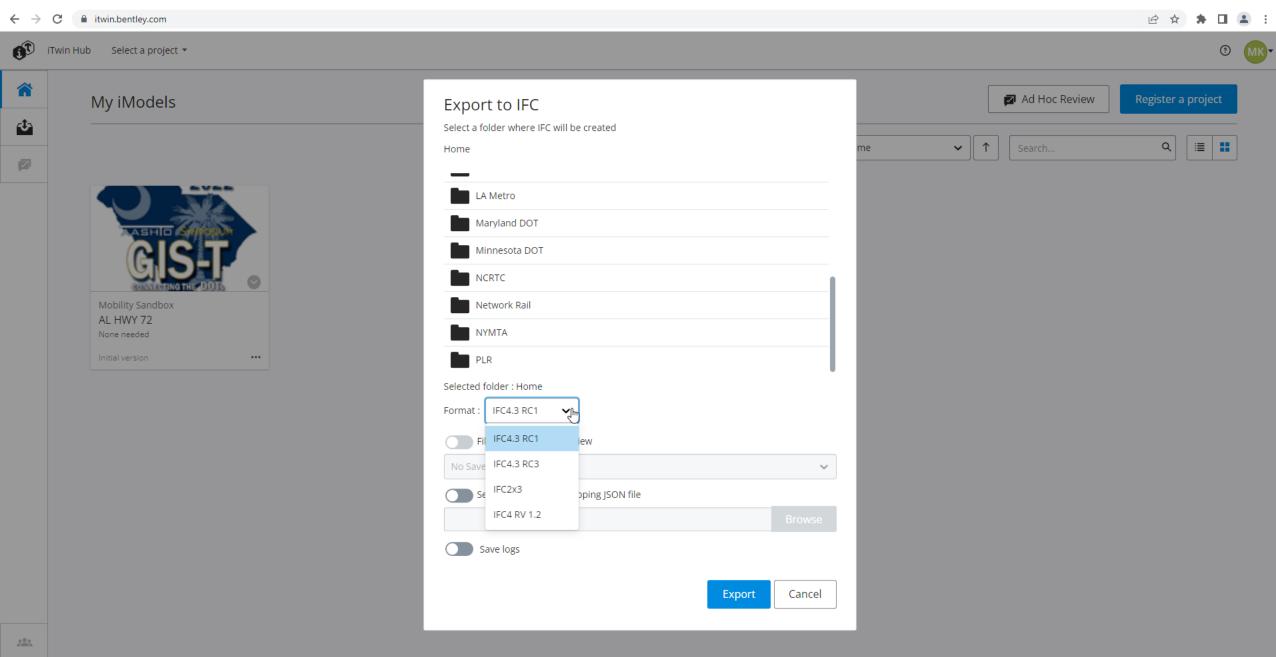
Ref: Ref (..\Geometry\Hwy72_Geom_Centerline.dgn)

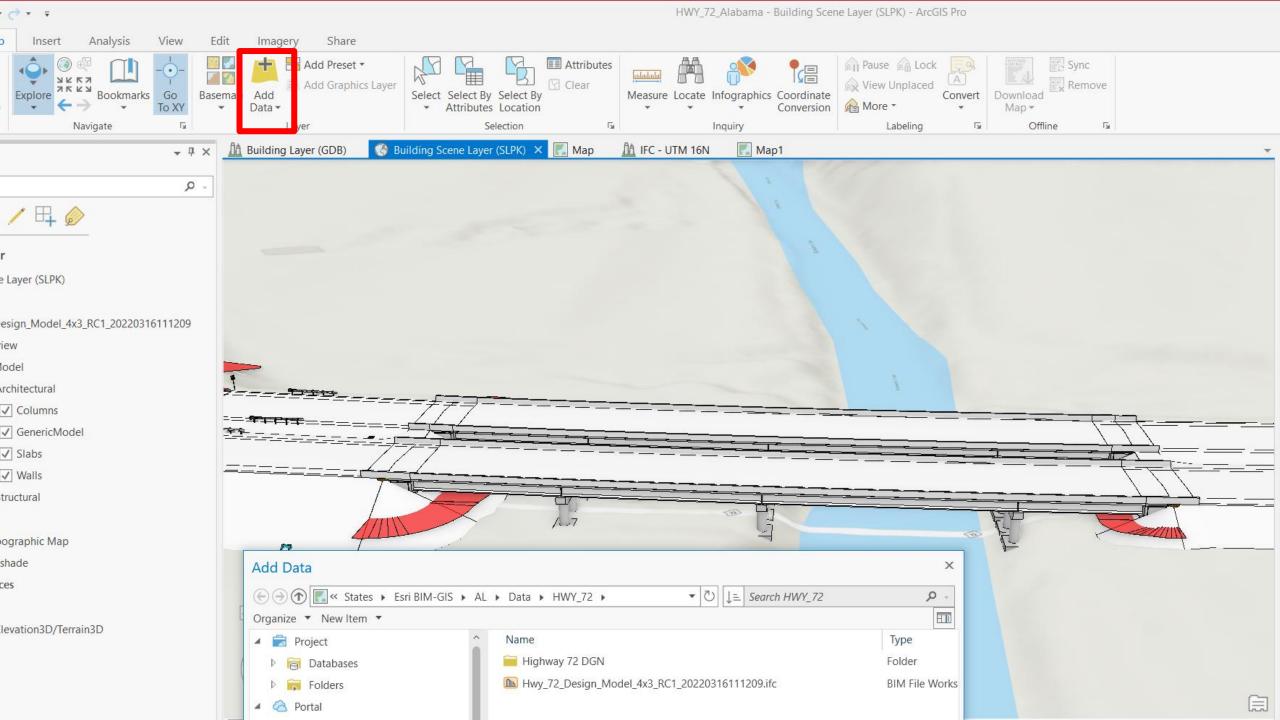

Level: Geom Baseline

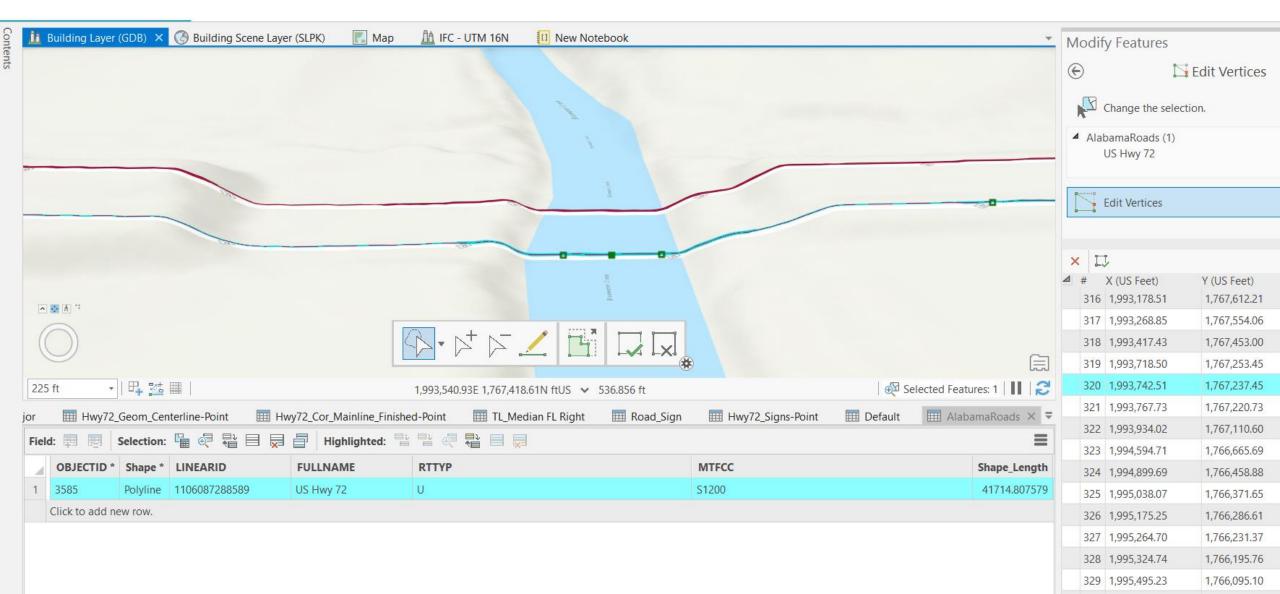
- Feature Definition (Common Features A)
 - 🔺 🦯 Alignment
 - 4 🍺 Road
 - Geom_Baseline
 Geom_Baseline_Driveway
 Geom_Baseline_Ramp
 Geom_Baseline_Secondary
 Geom_Temp
 - Terrain
 Corridor
 Superelevation
 - Linear Template
 - Surface Template
 - V Linear

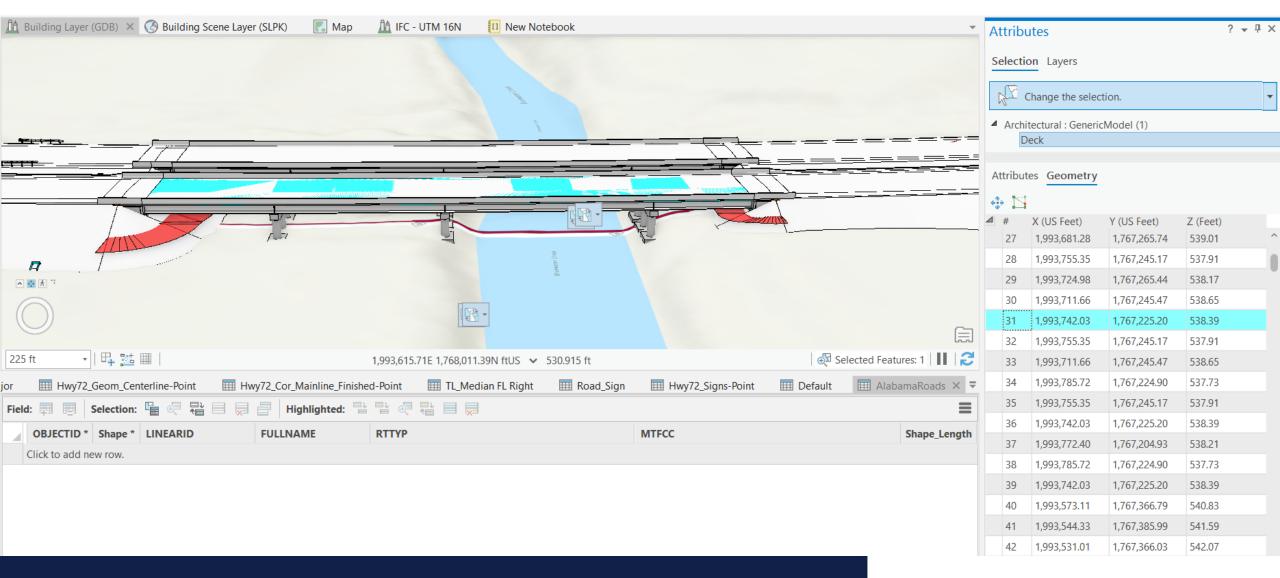

Publishing Roads Design Data Model to Common Data Environment (iTwin Hub)


iTwin Platform – Common Data Environment: Roads and Assets iModel




iTwin Platform – Common Data Environment: Roads and Assets iModel


iTwin Platform – Common Data Environment: Roads and Assets iModel



ARNOLD ALRS Routes-Centerlines: 2D Geometry

Receiving Realignments and/or New Alignments for Roads & Bridges: 2D/3D Geometry

Importing Alignments and Stationing

🗰 Apps 📕 Tools 📕 Drives 📕 References 📕 Projects

 $\hat{\Box}$

+

_

 \Leftrightarrow

 \bigcirc

New Scene 🥆

LRS Centerline Modeling Approaches: Current State

What do you use to digitize road centerlines?

Mentimeter

Coordinate Geometry (COGO) Tools

Which of these do you think is the most mature way of digitizing road centerlines?

• 0-10 Scale

Street Maps (Open/Google/World etc.)
Ordinary aerial imagery
Orthorectified imagery 51
Local Agency centerlines
NG911 Centerlines
High Accuracy GPS
CADD Design Drawings
Coordinate Geometry (COGO) Tools

LRS Centerline Modeling Source and Accuracy: Document Methodology

- Effort Level 1: Utilized National data sources¹ (e.g., Census TIGER, NATD) or ordinary Aerial/Satellite Data²
- Effort Level 2: Utilized Orthorectified Aerial imagery³, COGO Tools⁴, CAD/BIM Alignments⁵ from Digital Delivery/As-Builts
- Effort Level 3: Utilized NG911, Local or other Authoritative Agency Data; and/or Private Sector Data Source

		Effo	rt Level 1	Effort Lo	evel 2	Effort Level 3		
		Ordinary Aerial Imagery (2D Centerlines)	National Data Sources (TIGER, NATD)	Orthorectified Aerial Imagery (2D Centerlines)	Local Agency/NG911 Centerlines	CAD-BIM Drawings/Models (Digital Delivery)	Proprietary / Community Roads (OSM, HERE, INRIX)	
1	Arizona				Yes	Yes		
2	Caltrans	Yes		Yes				
3	Connecticut	Yes		Yes	Yes			
4	Colorado							
5	Florida		Yes	Yes		Yes		
6	Georgia			Yes		Yes		
7	Idaho	Yes		Yes	Yes	Yes		
8	New Mexico	Yes		Yes	Yes	Yes		
9	North Carolina			Yes	Yes	Yes	Yes	
10	Oklahoma	Yes				Yes		
11	Pennsylvania	Yes		Yes		Yes		
12	Vermont			Yes		Yes		
13	Washington	Yes		Yes	Yes	Yes		
14	Washington DC	Yes		Yes		Yes		
15	West Virginia	Yes		Yes	Yes			

Linear Referencing Methods Management

- Administration Level 1: No Referent LRM, All Data Stored in one LRM which is mileage based
- Administration Level 2: Referent-offset LRMs created, but only used to ingest data all data stored in mileage LRM(s)
- Administration Level 3: Referent-offset LRMs created and used for data ingestion, reporting. Data can be reported in any LRM.

		County/Town/District Boundary Offset	Milepost/Mile-Marker Offset	Derived Measure-Based LRMs	Intersection-Offset	Other Referent-Offset
1	Arizona		Yes		Yes	Yes
2	Caltrans	Yes	Yes			Yes
3	Connecticut				Yes	
4	Colorado					
5	Florida		Yes			
6	Georgia	Yes	Yes			
7	Georgia					
8	Idaho				Yes	
9	New Mexico					
10	North Carolina		Yes		Yes	
11	Oklahoma		Yes			
12	Pennsylvania	Yes	Yes		Yes	Yes
13	Vermont	Yes	Yes			
14	Washington		Yes			
15	Washington DC					
16	West Virginia	Yes	Yes		Yes	

LRS Centerline Modeling Detail (LOD)

Administration Level 1:

- » Vertices: No established rules for vertex density when editor digitizes centerlines
- » Breaking centerlines: Centerline length and break points not formally managed. No policy or procedure for defining centerline geometries
- » Z-values: Z-values are not modeled in the LRS

Administration Level 2:

- » Vertices: Formal "internal" procedural document exists, that is used to determine vertex density when digitizing centerlines
- » Breaking centerlines: Formal "internal" procedural document exists to determine centerline geometry length and break points
- » **Z-values**: Z-values are not modeled in the LRS, but Z-values extracted from other data sources (e.g.: LiDAR) are integrated with LRS Routes to engineer a 3D linear routes data model. The engineered data model is published for use in specific business processes.

Administration Level 3:

- » Vertices: Formal procedural document to (a) determine vertex density (b) bring external linework into LRS (c) Perform QA/QC checks on external linework to ensure it meets vertex density rules, and (d) perform geometry conflation, correction for external data in accordance with procedural document. (Note: External data source could be NG911, DOT CADD, etc.)
- » Breaking centerlines: Formal procedural document to (a) determine centerline geometry length and break points (b) ensure that external linework meets centerline geometry and break points related rules
- » **Z-values:** Z-values modeled in the LRS, and vertical curve is considered in determining centerline vertex density.

LRS Centerline Modeling Detail (LOD)

		Administration Level 1			Administration Level 2			Administration Level 3			
		No Vertex Density Rules	NO Centerline Break Points & Length Rules	Z-values Not Modeled in LRS	Vertex Density Rules (Internal)	Centerline Break Points & Length Rules (Internal)	Z-values Integrated outside of LRS	Vertex Density Rules, QA-QC for Internal- External Roads	Centerline Break Points & Length Rules for Internal- External Roads	Z-values Modeled. Vertical Curve considered in Vertex Density	
1	Arizona			Not modeled. Would like to.							
2	Caltrans										
3	Connecticut			Don't include z-values in LRS							
4	Colorado										
5	Florida			Don't include z-values in LRS							
6	Georgia			Not modeled. Would like to.							
7	Idaho			Not modeled. Would like to.							
8	New Mexico			Not modeled. Would like to.							
9	North Carolina						Modeled				
10	North Dakota			Not modeled. Would like to.							
11	Oklahoma				Yes						
12	Pennsylvania			Not modeled. Would like to.							
13	Tennessee			Not modeled. Would like to.							
14	Texas			Don't include z-values in LRS							
15	Vermont			Not modeled. Would like to.	Yes						
16	Washington			Not modeled. Would like to.							
17	Washington DC										
18	West Virginia			Not modeled. Would like to.	Yes						

Mentimeter

Breakout Session 2: Open Discussion & Survey

Discuss Modeling Approach and Use Cases for:

- Centerlines/Datum Modeling and Data Governance
 - Pull Linear Referencing Data from Design
 - Establish Geometry Modeling Standards and manuals at Enterprise level: Centerline Modeling Detail: Vertices, Horizontal and Vertical Curves/Grades, Z-Values
- Asset Information Requirements for Design/CAD; For example
 - Stations: Mileposts, Mile-markers
 - Centerlines: Dual/Single Carriageway? Median Crossovers, Turn Lanes, Vertical Alignment?
 - HPMS Data Items: Roadway Characteristics
 - MIRE Data Items: Intersection data
 - Assets and Attributes: Signs, Signals, Guardrails, etc.
- Organizational Process for Engagement with Digital Delivery/Design-CAD team – What? How? Who?
- Tools-Techniques for facilitating Design to GIS/AM exchange
 - What design data model?
 - What tool is used to extract?
 - What data is extracted?
 - What features in GIS are updated?

Topic 3: Modeling Standards: What? Why? How?

- National and International Initiatives
- Level of Information (LOI) Content Standards
 - USRS
 - HPMS-MIRE
 - ✤ FHWA NBI, AASHTO NBE-BME
 - buildingSMART Industry Foundation Classes (IFC)
 - ✤ MUTCD

Level of Detail (LOD) Standards: Geometry

- OGC Geographic Data Format
- ✤ OGC CityGML
- buildingSMART IFC
- Generalized Modeling Network Specification (GMNS)

Topic 3 Objective: Road Network Data Model Development for Enterprise Use National and International Organizations Collaboration to Facilitate Road Network Data Model Creation

Asset Management System Digital Project Delivery System	Linear Referencing System	Freight Analysis System	Travel Der Modeli Syster	ng	Safety Analysis System	Traffic Analysis System	
FMIS NBI, HPMS, A	ARNOLD Routes and Roadway Characteristics				MIRE NPMRDS		
Project	NG911 RCL & Nodes USRS Road Prof			d Profiles	、		
	1 , ,	Junction (Nodes)			Intersection		
Alignment	Open Street Ma	os Ways & Nodes		OGC Geo	Geographic Data Format, CityGML		
Mile Markers / Mile Posts		Road Segments (Edges)				Turns	
Bridge, Pavement	Industry Foundation Classes (IFC)	Generalized Modeling Network Specification (GMNS)					
Assets: Signs, Guardrails,		Turn Segments, Median Crossovers					

Private Sector Data Vendors – Asset Data (including Roads), Traffic Data, Safety Data, Traveler Data, Lidar Data, Imagery Data

National and International Data Standard Development Organizations – ISO, OGC, W3C, AASHTO, FHWA, buildingSMART, etc.

National and International Initiatives Standards Development and Adoption

- FHWA ARNOLD, HPMS 9 and MIRE
- AASHTO Resolution: buildingSMART IFC Adoption
- Open Geospatial Consortium (OGC) and buildingSMART Collaboration
- World Wide Web Consortium Collaboration (W3C) and Initiatives
- Software Vendors: Adoption and Use of Standards Esri, Bentley, Autodesk, etc.
- National and International Transportation Agencies with Standards: Projects, Pilots and Best Practices

AEGIST Guidebook v2.0 Data Modeling Standards

Content Standards

- 1. Highway Performance Monitoring System (HPMS 9), especially HPMS 9.0 Reassessment
- 2. National Bridge Inventory (NBI); Bridge Management Elements (BME); National Bridge Elements (NBE)
- 3. United States Road Specifications (USRS) and US Army Corp of Engineers (USACE) Road Lines
- 4. United States Census Bureau's Road TIGER/Line files
- 5. Model Inventory of Roadway Elements (MIRE)

Geometry Standards

- 1. All Roads Network of Linearly Referenced Roads (ARNOLD)
- 2. Geographic Data Format (GDF) from Open Geospatial Consortium (OGC)
- 3. CityGML from Open Geospatial Consortium (OGC)
- 4. General Modeling Network Specification (GMNS)
- 5. Industry Foundation Classes (IFC) from buildingSMART
- 6. Open Street Maps (OSM) and Shared Streets
- Proprietary standards: Esri Roads & Highways ALRS, Bentley AssetWise LRS (AWLRS), GeoMedia, Rizing Intersection Manager, TransCAD, Cube, Emme, HERE, INRIX etc.

Disclaimer: FHWA is facilitating the discussion around NBTL and currently there are no plans for FHWA to host the NBTL

IFC Implementation: Software Vendors & Business Use Cases

人 AUTODESK.

Trimble.

Asset Information Modeling (AIM) – Design, Construction, Operations & Maintenance (ISO 19650)

Project Information Modeling (PIM) – Project Site and Assets

Enterprise Data Life Cycle Management using Geospatial Applications

Geometry and Content Data Modeling in Geospatial Digital Twins

Vendor Support for Open Standards Podcast Highlights – Jack Dangermond

"One of the common intersections with the great work you guys are doing in building standards, so we can **interoperate** with the whole built environment to support the work of your listeners...

Do we support open standards? Any company is a damn fool if they <u>don't</u> support **open standards**. If you're going to work in a modern world, you must be open and interoperable with other companies...

Jack Dangermond President and Founder Esri

Company's today have to be **open** and to **innovate** in highly competitive markets"

Vendor Support for Open Standards Podcast Highlights - Keith Bentley

Keith Bentley Founder Bentley Systems

"The only real approach to making an **industry-wide transformation**, is for people to organize around things that are **open** – and obviously buildingSMART is big on things that are open...

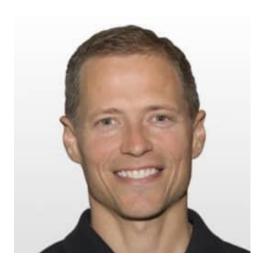
A lot of people don't quite understand that 'open' can make the huge difference between whether your data is valuable **long-term**, or not. Do you own your own data? Are you able to get to your data without paying somebody...

Our entire mission on our digital twin journey has been around allowing users to have **choices** to own their own data".

Vendor Support for Open Standards Podcast Highlights – Andrew Anagnost

Andrew Anagnost Chief Executive Officer Autodesk

"Customers need an **interoperable ecosystem**...interoperability is key to a successful digital future for AEC and quite frankly, we're proud that we have roots in the early discussions on this especially around **openBIM**"


The importance of having conversations like this, and having organizations like buildingSMART, can help drive some of the critical **process changes** that need to happen to drive an ecosystem that is more sustainable and efficient. It's not just about technology, it's about **changing the ecosystem** to work better".

Vendor Support for Open Standards Podcast Highlights – Rob Painter

"the view we have of **buildingSMART** is to make the whole greater than the sum of the parts...

We all need to be more **open** and to have less data loss. Our **commitment** is to have this philosophy of openness and the continual pursuit of being more open...

we continue to focus on interoperability"

Rob Painter CEO, Trimble

buildingSMART International

Open Neutral

Non-Profit

International

buildingSMART International

Standards Adoption

AASHTO Board of Directors Administrative Resolution:

Adoption of IFC Schema as the national standard for AASHTO States

Administrative Resolution AR-1-19 Title: Adoption of Industry Foundation Classes (IFC) Schema as the Standard Data Schema for the Exchange of Electronic Engineering Data

Whereas, Several data schema exist for the exchange of electronic engineering data, among them Trans XML, Land XML, and various industry schemas; however, there is no single standard data schema recognized by the industry;

Whereas, Transportation agencies need to implement asset management more efficiently throughout the lifecycle of the asset, which requires the ability to exchange data seamlessly;

Whereas, Transportation agencies are progressing toward Building Information Models as the successor to the standard plan set for highway infrastructure projects;

Whereas, Transportation agencies are utilizing a variety of tools and equipment from multiple vendors and manufacturers to gather, display, and work with the data necessary for infrastructure project development, and interoperability of the models is a critical feature so that the agencies have the ability to transfer data seamlessly across these platforms;

Whereas, Seamless data transfer necessitates a single data schema that is recognized as the industry standard, otherwise there is a potential loss of data when translated from one device or one application to another; however, there has been a lack of consensus for adoption of a single schema;

Whereas, To date efforts to establish a national standard data schema have not been successful, in large part due to the inability to identify an agency or entity capable of providing ongoing development, support, and maintenance of the schema, so it would be advantageous to move toward a schema where that support mechanism already exists;

Whereas, There is an international effort underway, led by buildingSMART International, to extend their existing Industry Foundation Classes (IFC) standard data schema to incorporate infrastructure projects including IFC Bridge and IFC Road;

Whereas, Adoption of a single data schema by transportation agencies would give vendors and manufacturers the standard we need to facilitate collaboration on their adoption as well;

Whereas, The AASHTO Committee on Bridges and Structures already has several efforts underway to facilitate the adoption of IFC Bridge as the standard data schema for their discipline, and it would be essential in order to ensure and maintain interoperability between these two disciplines that we adopt IFC Road for highway infrastructure projects; and

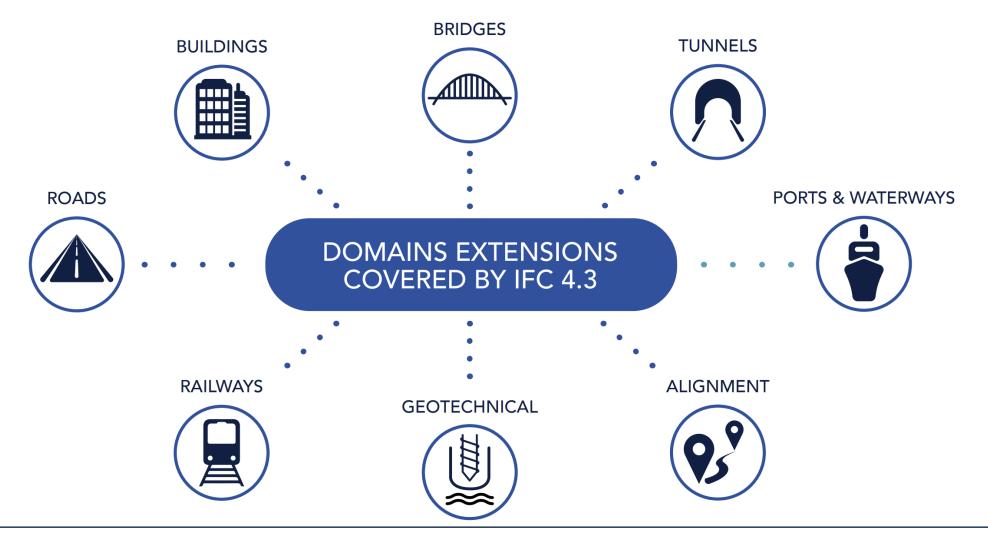
Whereas, There are other AASHTO committees with interest in this effort, including but not limited to the Committee on Data Management and Analytics, the Committee on Bridges and Structures, and AASHTOWare; now, therefore, be it

Resolved, That the AASHTO Board of Directors recommends the adoption of IFC Schema as the national standard for AASHTO States;

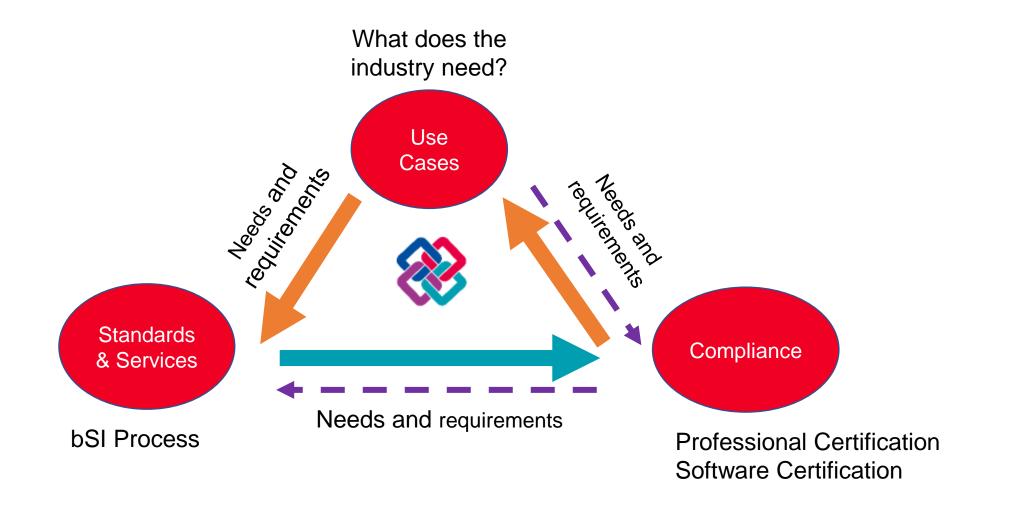
Resolved, That an internal, cross-committee, multi-disciplined group within AASHTO should be formed to coordinate schema development, identify gaps, resolve any conflicts, and avoid duplication of efforts; and

Resolved, That possible AASHTO membership in buildingSMART International should be investigated to provide representation and participation for the state DOTs in schema development.

ART

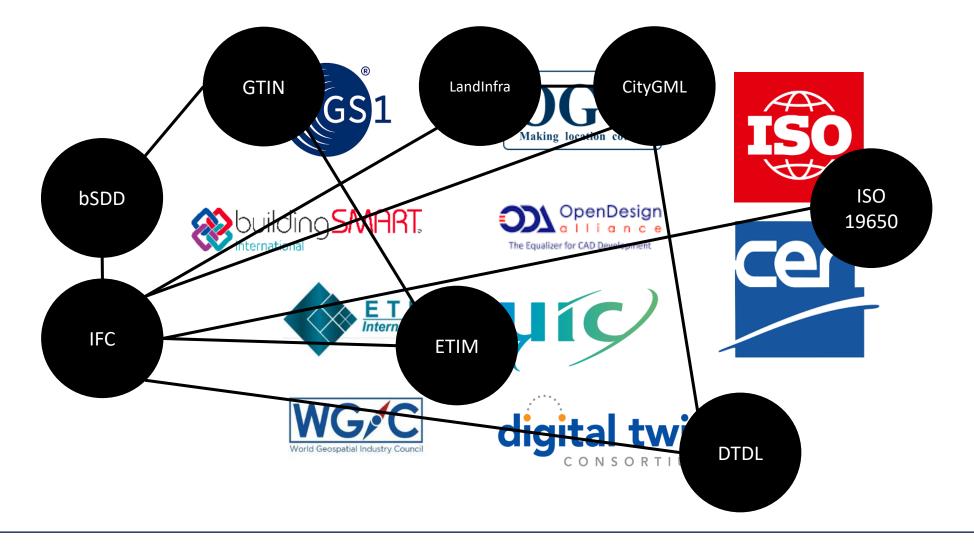

Industry Foundation Classes (IFC)

A domain specific open software standard for data exchange


ISO 16739

The New IFC 4.3 Standard

buildingSMART International



Open Standards Partnerships

Open Standards Integration

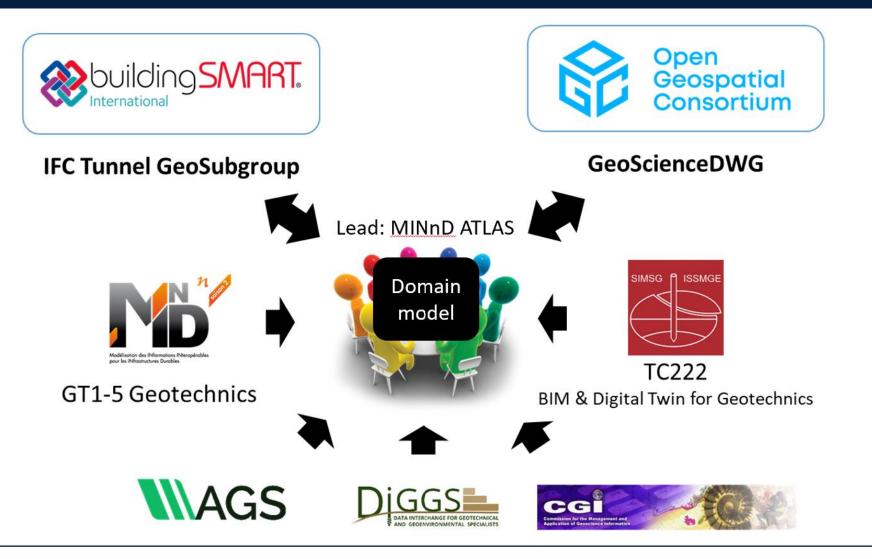
© buildingSMART International 2022

buildingSMART + OGC Collaboration

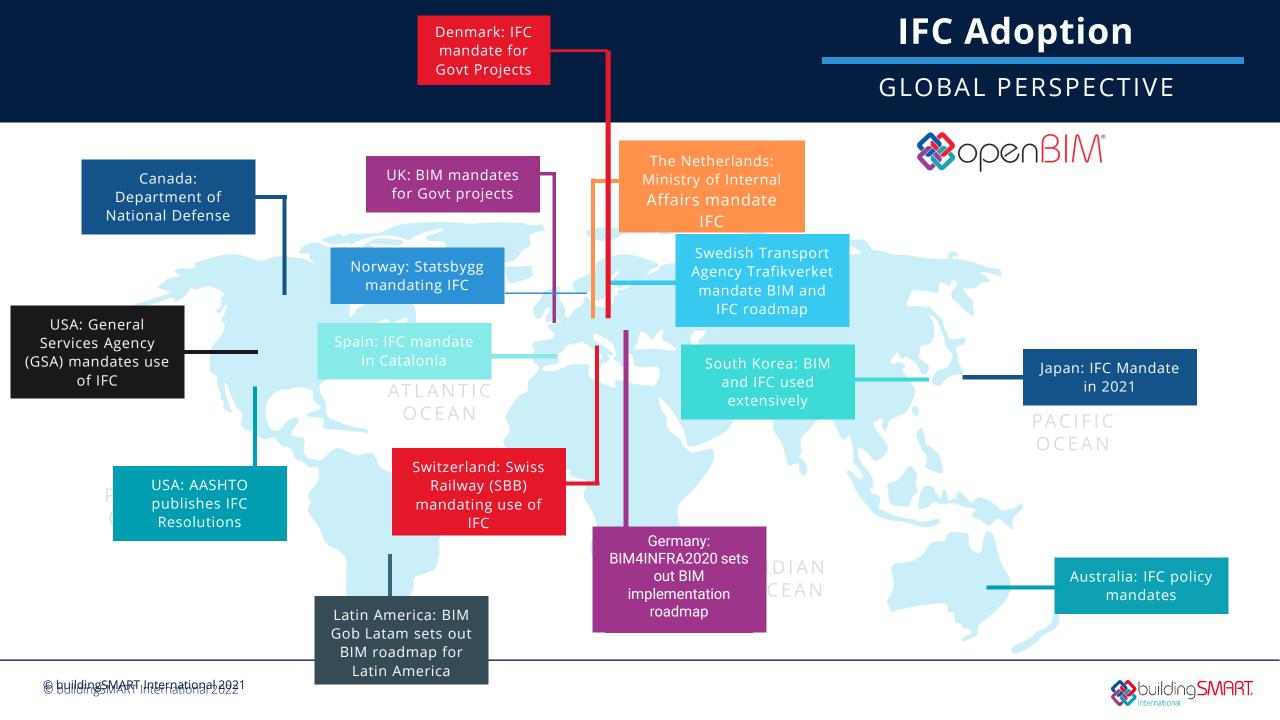

Demand for BIM – GIS interoperability

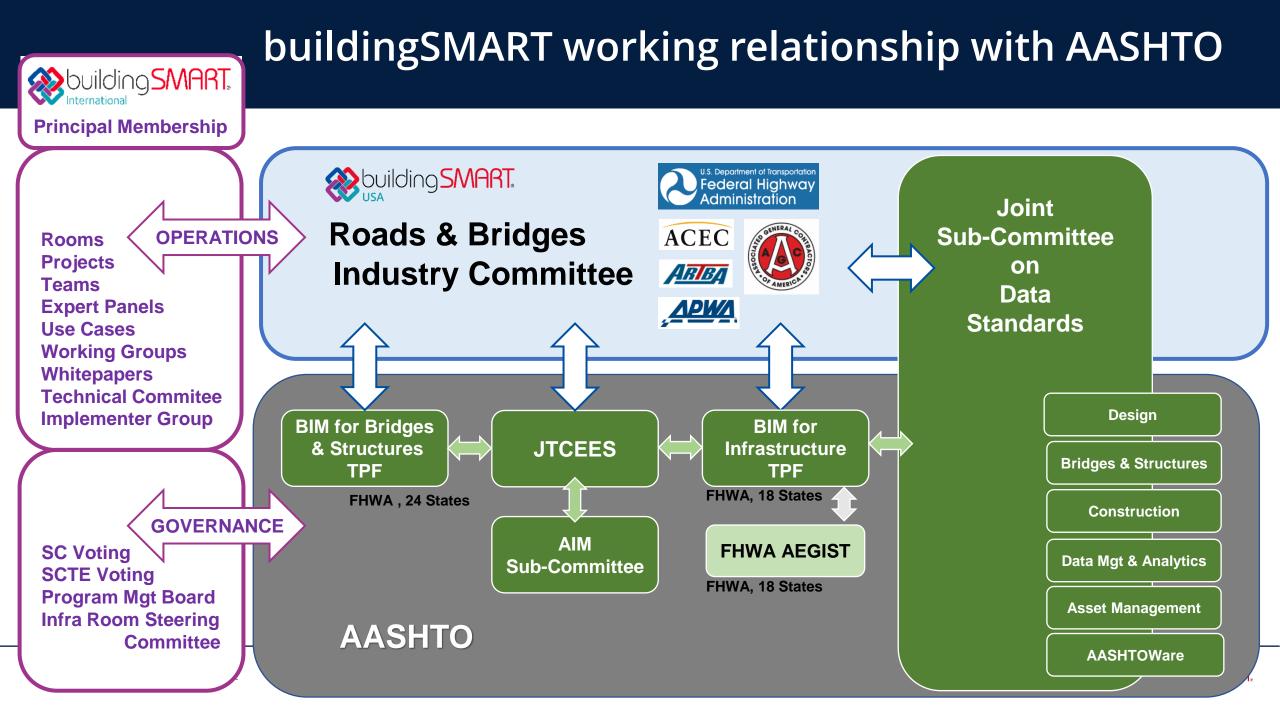
Key topics of common interest:

- Semantics
- Placement
- Geology
- Interfaces

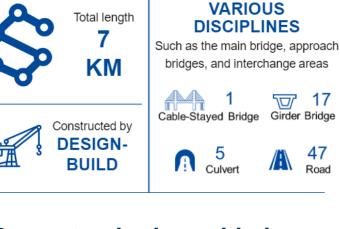

Joint Initiatives:

- IDBE (bSI OGC) White paper published 2021
- IDBE Pilot Project (OGC call for participation)
- White paper for BIM and GIS in the geotechnics domain
- Airport Room





buildingSMART + OGC Collaboration $BIM \leftarrow \rightarrow GeoTech$


Case Studies and Projects

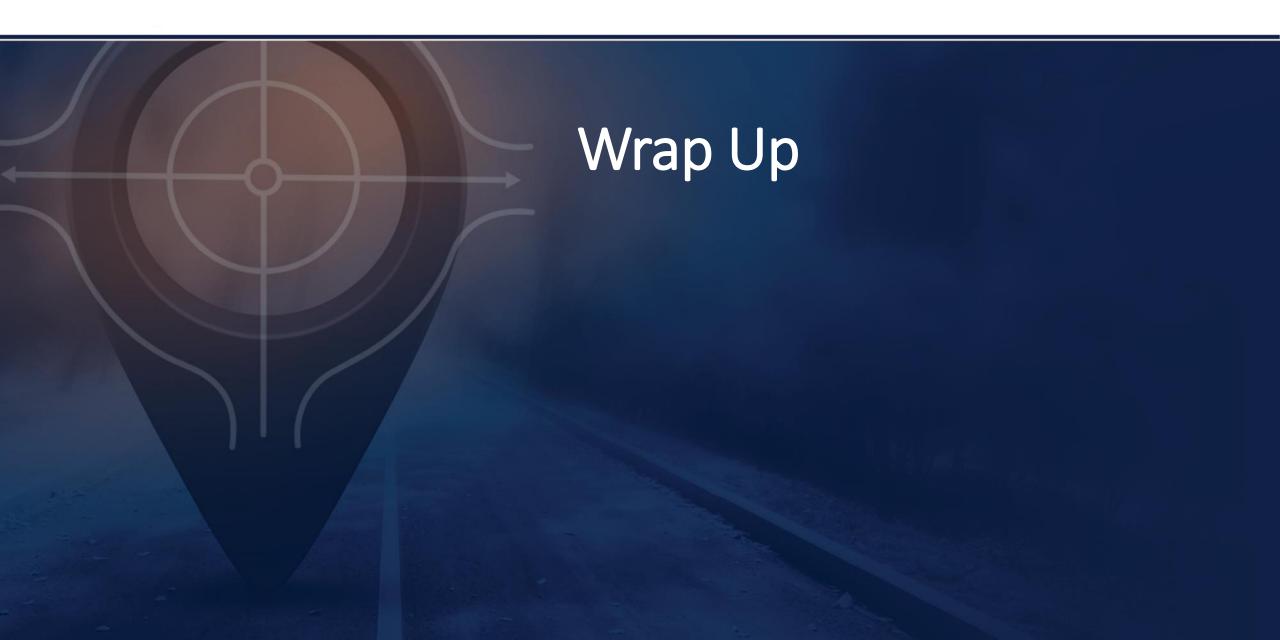
- Interstate Bridge Replacement, Washington and Oregon
- AEGIST Pooled Fund Study Pilots with State DOTs
 - » Pennsylvania State DOT
 - » Tennessee State DOT
 - » Ohio State DOT
- New South Wales Roads and Asset Data Modeling for Design-Asset Systems

2020 buildingSMART Award Winner

IFC for Design: Panama Canal 4th Bridge

Open standards enabled:

- Open machine-readable manual
- ✓ Bridge designers used IFC software
- Developed using LinkedData and semantic web
- ✓ Integrating ontologies was key
- ✓ ifcOWL, IFC 2x3, IFC4


<u>Mentimeter</u>

Discussion Topics:

- Projects, Pilots and Best Practices in Standards-Based Road Network Data Modeling?
- Why Standards? What are the Business Use Cases?
 - As-Built and Proposed Assets Modeling: Design-Construction to Asset Management Handoff?
 - Road Network for Travel Demand Modeling
 - Road Network for Freight Analysis
 - Road Network for Connected Vehicles Environment
 - Other?
- How can AEGIST and FHWA help with adoption of Standards at State and Local Agencies?
 - Collaboration and Role of Private Sector How Road Network Data Vendors and Software Vendors are adopting Road Network Standards
 - Engagement with Standard Development Organizations in Adoption and Deployment of Standards (e.g.: AEGIST Pooled Fund Program? BIM Pooled Fund Program? Standards deployment via Pilots)
 - Other Approaches?
- Are there policies and processes being formulated at State and/or Local agencies related to Data Standards development/adoption?

Resources AEGIST Presentations, Webinars

<u>https://gisintransportation.com/presentations/</u> <u>https://gisintransportation.com/webinars</u> <u>https://gisintransportation.com/about/objectives-themes/</u>

Outreach for Applications of Enterprise GIS In Transportation PRESENTATIONS ABOUT PEER EXCHANGES **Presentations** RESOURCES WEBINARS Applications of Enterprise GIS in January 25, 2022: AEGIST TRB Update at AED40 Committee Meeting WORKSHOPS & MEETINGS Transportation (AEGIST) January 7, 2022: AEGIST Complete Streets Vision and Activities Guidebook v1.0. January 2020: TRB Annual Meeting Geographic Information Science and Applications Committee Meeting Read the Guidebook PRESENTATIONS August 2020 Traffic Records Forum Guidebook v2.0 Under Development. September 2020: National Roads Symposium, HPMS 9.0 Inputs October 2020: RHUG Presentation on AEGIST Vision and Goals How do I get involved?

> For more information and version 1.0 of the guidebook, please visit: https://www.gis.fhwa.dot.gov/AEGIST.a

Upcoming AEGIST Events: 2022

Peer Exchange 3: AEGIST Guidebook v2.0 Collaborative Development with Agency Practices

- Chapter 1: Geospatial Information Systems: Data & Applications
- Chapter 2: Centerlines (Datum) Information Modeling
- Chapter 3: Route Network Information Modeling
- Chapter 4: Intersection Information Modeling
- Chapter 5: Asset Information Modeling (AIM)
- Chapter 6: Project Information Modeling (PIM)

- Data Management & Applications
 - » Data Architecture: Information Requirements
 - » Data Modeling
 - » Data Integration/Interoperability
 - » Data Quality
 - » Data Engineering & Analytics Platforms
- Data & Applications Governance

Acknowledgement

Thomas Roff, FHWA Justin Clarke, FHWA Robert Pollack, FHWA Sarah Pascual Weisman, FHWA Mark Sarmiento, FHWA Patrick Whiteford, AZ DOT Jim Meyer, AZ DOT Greg Ciparelli, CTDOT Justin Brunetti, CTDOT Jerome Breyer, Works Consulting Erin Lesh, NCDOT Amity Little, NCDOT Ryan Koschatzky, NCDOT Ian Kidner, Ohio DOT Vikki Hankus, Ohio DOT Lavanya Sugumar, Ohio DOT Sam Granato, Ohio DOT

David Alvarez, ESRI Nathan Easley, ESRI Rahul Rakshit, ESRI Chad Baker, Caltrans Kathleen Mohla, Caltrans Gerald Schumacher, Caltrans Yueming Wu, WVDOT Charles McNeel, WVDOT Aaron Ferrari, WVDOT Will Holmes, KYTC James Graham, DCDOT Will Thoman, ITD Margaret Pridmore, ITD Kevin Koester, KS DOT Elsit Mandal, KS DOT Chase Null, KS DOT James Stewart, KSDOT

Frank Desendi, PennDOT Patrick Kielty, PennDOT Jesse Frankovich, MDOT Karen Faussett, MDOT Kevin Hunt, NYSDOT Patrick Kemble, NYSDOT Tom Neville, TXDOT Jennifer Bierman, TXDOT Gene Barrera, Merced County Natasha Potter, CalOES Sam Sedgwick, CalOES Amanda Kabisch-Herzog, CalOES Marc Kratzschmar, Bentley Russell Provost, Montgomery County Jesse McGowan, Montgomery County David Anspacher, Montgomery County Eli Glazier, Montgomery County